67 research outputs found

    Plane wave/pseudopotential implementation of excited state gradients in density functional linear response theory: a new route via implicit differentiation

    Full text link
    This work presents the formalism and implementation of excited state nuclear forces within density functional linear response theory (TDDFT) using a plane wave basis set. An implicit differentiation technique is developed for computing nonadiabatic coupling between Kohn-Sham molecular orbital wavefunctions as well as gradients of orbital energies which are then used to calculate excited state nuclear forces. The algorithm has been implemented in a plane wave/pseudopotential code taking into account only a reduced active subspace of molecular orbitals. It is demonstrated for the H2_2 and N2_2 molecules that the analytical gradients rapidly converge to the exact forces when the active subspace of molecular orbitals approaches completeness

    Excited state tautomerism of the DNA base guanine: a restricted open-shell Kohn-Sham study

    Get PDF
    The relative stabilities of the six lowest energy tautomers of the DNA base guanine have been investigated in the first excite
    • …
    corecore