28 research outputs found

    On Microscopic Modelling of Adaptive Cruise Control Systems

    Get PDF
    AbstractThe Adaptive Cruise Control (ACC) system, is one of the emerging vehicle technologies that has already been deployed in the market. Although it was designed mainly to enhance driver comfort and passengers’ safety, it also affects the dynamics of traffic flow. For this reason, a strong research interest in the field of modelling and simulation of ACC-equipped vehicles has been increasingly observed in the last years. In this work, previous modelling efforts reported in the literature are reviewed, and some critical aspects to be considered when designing or simulating such systems are discussed. Moreover, the integration of ACC-equipped vehicle simulation in the commercial traffic simulator Aimsun is described; this is subsequently used to run simulations for different penetration rates of ACC-equipped vehicles, different desired time-gap settings and different networks, to assess their impact on traffic flow characteristics

    Evolucijski algoritam temeljen na off-line planeru putanje za navigaciju bespilotnih letjelica

    Get PDF
    An off-line path planner for Unmanned Air Vehicles is presented. The planner is based on Evolutionary Algorithms, in order to calculate a curved pathline with desired characteristics in a three-dimensional environment. The pathline is represented using B-Spline curves, with the coordinates of its control points being the genes of the Evolutionary Algorithm artificial chromosome. The method was tested in an artificial three-dimensional terrain, for different starting and ending points, providing very smooth pathlines under difficult constraints.Predstavljen je off-line planer putanje za bespilotne letjelice. Planer je temeljen na evolucijskim algoritmima za proračun zakrivljene putanje sa željenim karakteristikama u 3D prostoru. Putanja je predstavljena pomoću B-spline krivulja, gdje su koordinate kontrolnih točaka geni umjetnih kromosoma evolucijskih algoritama. Metoda je provjerena na umjetnom 3D prostoru s različitim početnim i konačnim točkama, gdje su dobivene vrlo glatke putanje uz zadovoljenje strogih ograničenja

    Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation

    No full text
    A relatively new method of addressing different hydrological problems is the use of artificial neural networks (ANN). In groundwater management ANNs are usually used to predict the hydraulic head at a well location. ANNs can prove to be very useful because, unlike numerical groundwater models, they are very easy to implement in karstic regions without the need of explicit knowledge of the exact flow conduit geometry and they avoid the creation of extremely complex models in the rare cases when all the necessary information is available. With hydrological parameters like rainfall and temperature, as well as with hydrogeological parameters like pumping rates from nearby wells as input, the ANN applies a black box approach and yields the simulated hydraulic head. During the calibration process the network is trained using a set of available field data and its performance is evaluated with a different set. Available measured data from Edward’s aquifer in Texas, USA are used in this work to train and evaluate the proposed ANN. The Edwards Aquifer is a unique groundwater system and one of the most prolific artesian aquifers in the world. The present work focuses on simulation of hydraulic head change at an observation well in the area. The adopted ANN is a classic fully connected multilayer perceptron, with two hidden layers. All input parameters are directly or indirectly connected to the aquatic equilibrium and the ANN is treated as a sophisticated analogue to empirical models of the past. A correlation analysis of the measured data is used to determine the time lag between the current day and the day used for input of the measured rainfall levels. After the calibration process the testing data were used in order to check the ability of the ANN to interpolate or extrapolate in other regions, not used in the training procedure. The results show that there is a need for exact knowledge of pumping from each well in karstic aquifers as it is difficult to simulate the sudden drops and rises, which in this case can be more than 6 ft (approx. 2 m). That aside, the ANN is still a useful way to simulate karstic aquifers that are difficult to be simulated by numerical groundwater models

    Evolutionary algorithm based off-line path planner for UAV navigation

    No full text
    Summarization: An off-line path planner for Unmanned Air Vehicles is presented. The planner is based on Evolutionary Algorithms, in order to calculate a curved pathline with desired characteristics in a three-dimensional environment. The pathline is represented using B-Spline curves, with the coordinates of its control points being the genes of the Evolutionary Algorithm artificial chromosome. The method was tested in an artificial three-dimensional terrain, for different starting and ending points, providing very smooth pathlines under difficult constraints.Παρουσιάστηκε στο: Automatik

    Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization

    No full text
    Artificial neural networks (ANNs) have recently been used to predict the hydraulic head in well locations. In the present work, the particle swarm optimization (PSO) algorithm was used to train a feed-forward multi-layer ANN for the simulation of hydraulic head change at an observation well in the region of Agia, Chania, Greece. Three variants of the PSO algorithm were considered, the classic one with inertia weight improvement, PSO with time varying acceleration coefficients (PSO-TVAC) and global best PSO (GLBest-PSO). The best performance was achieved by GLBest-PSO when implemented using field data from the region of interest, providing improved training results compared to the back-propagation training algorithm. The trained ANN was subsequently used for mid-term prediction of the hydraulic head, as well as for the study of three climate change scenarios. Data time series were created using a stochastic weather generator, and the scenarios were examined for the period 2010–2020

    Flow Analysis of the DLR-F11 High-Lift Model Using the Galatea-I Code

    No full text
    corecore