789 research outputs found

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy

    Quantum Transparency of Anderson Insulator Junctions: Statistics of Transmission Eigenvalues, Shot Noise, and Proximity Conductance

    Full text link
    We investigate quantum transport through strongly disordered barriers, made of a material with exceptionally high resistivity that behaves as an Anderson insulator or a ``bad metal'' in the bulk, by analyzing the distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness (starting from the single interface limit) always predicts a non-zero probability to find high transmission channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise power (as well as its sample-to-sample fluctuations) and demonstrate how it provides a single number characterization of non-trivial transmission properties of different types of disordered barriers. The appearance of open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesoscopic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the Anderson-insulator/superconductor junctions observed in recent experiments [Phys. Rev. B {\bf 61}, 13037 (2000)]. Our findings are also relevant for the understanding of the role of defects that can undermine quality of thin tunnel barriers made of conventional band-insulators.Comment: 9 pages, 8 color EPS figures; one additional figure on mesoscopic fluctuations of Fano facto

    Preparation and Characterization of Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> Nanocomposite for Biomedical Application

    Get PDF
    The scope of this chapter is to get deeper insight into the correlation between synthesis parameters and magnetic behavior of the nanocomposite materials containing hematite (α-Fe2O3) nanoparticles. Potential applications of nano-hematite in biomedicine are listed in the short overview. Then, basic requirements necessary for synthesis of high-quality nanoparticles for biomedical application are summarized. The next part of the chapter is devoted to the sol-gel synthesis that is recognized as suitable for preparation of the nanocomposite materials containing α-Fe2O3 nanoparticles. Having in mind that sol-gel method considers preparation of hematite nanoparticles via Fe2O3 phase transformations initiated by thermal treatment at high temperatures, coexistence of the other iron oxides (such as ε-Fe2O3) with α-Fe2O3 phase is commented. Special attention is paid on mechanism of the critical field (which is in literature usually denoted as coercivity field) alterations. Diffraction patterns and hysteresis measurements of the chosen samples containing hematite nanoparticles in the silica matrix are represented. Finally, variations in the observed measured critical field values are discussed

    Quantum mechanics: Myths and facts

    Get PDF
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in Found. Phy

    Structural, chemical and deformation changes in friction welded joint of dissimilar steels

    Get PDF
    Fundamental principles of friction welding of dissimilar steels (high speed and tempering steel) from the aspect of metallurgical and chemical processes occurring in the joint zone are presented in this paper. Considering that phenomena accompanying the friction welding are interdependent, it was necessary to experimentally determine the process variable parameters, to establish the optimal welding regime. The experiments were set and realized so that all the variables were analyzed as a function of the friction time. The metallographic investigations included analysis of the joint zone microstructure through structural phases and hardness changes, due to influence of the heat treatment - annealing. The experimental work included analysis of the geometry changes, the joint zone structure and the basic mechanical characteristics of the joint realized by the friction welding

    Physico-chemical characterization of 90Y-labeled antimony trisulfide colloid and comparison with 99mTc-labeled one

    Get PDF
    In radionuclide therapy, the importance of 90Y as a beta-emitting radionuclide is increasing rapidly. The properties of the 90Y-labeled antimony trisulfide colloid (Sb2S3) were compared with the 99mTc-labeled one. Labeling efficiencies reached >96% and >97% for 90Y- and 99mTc-labeled colloids respectively. Both preparations were stable for 72 h in saline and 1% albumin solution. Filtration analysis showed that more than 94% of total 90Y radioactivity is associated with the colloidal particles smaller than 20 nm, while more than 90% of 99mTc radioactivity is associated with the particles retained on the filter with a 20 nm pore size. 90Y-labeled colloids showed high labeling efficiency, stability and potency for clinical use.Physical chemistry 2008 : 9th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 24-28 September 200

    Two-dimensional fermionic superfluids, pairing instability and vortex liquids in the absence of time reversal symmetry

    Full text link
    We consider a generic two-dimensional system of fermionic particles with attractive interactions and no disorder. If time-reversal symmetry is absent, it is possible to obtain incompressible insulating states in addition to the superfluid at zero temperature. The superfluid-insulator phase transition is found to be second order in type-II systems using a perturbative analysis of Cooper pairing instability in quantum Hall states of unpaired fermions. We obtain the pairing phase diagram as a function of chemical potential (density) and temperature. However, a more careful analysis presented here reveals that the pairing quantum phase transition is always preempted by another transition into a strongly correlated normal state which retains Cooper pairing and cannot be smoothly connected to the quantum Hall state of unpaired fermions. Such a normal phase can be qualitatively viewed as a liquid of vortices, although it may acquire conventional broken symmetries. Even if it did not survive at finite temperatures its influence would be felt through strong quantum fluctuations below a crossover temperature scale. These conclusions directly apply to fermionic ultra-cold atom systems near unitarity, but are likely relevant for the properties of other strongly correlated superfluids as well, including high temperature superconductors.Comment: 11 pages, 3 figures, published versio
    corecore