246 research outputs found
A Semi-Analytical Model of Visible-Wavelength Phase Curves of Exoplanets and Applications to Kepler-7 b and Kepler-10 b
Kepler has detected numerous exoplanet transits by precise measurements of
stellar light in a single visible-wavelength band. In addition to detection,
the precise photometry provides phase curves of exoplanets, which can be used
to study the dynamic processes on these planets. However, the interpretation of
these observations can be complicated by the fact that visible-wavelength phase
curves can represent both thermal emission and scattering from the planets.
Here we present a semi-analytical model framework that can be applied to study
Kepler and future visible-wavelength phase curve observations of exoplanets.
The model efficiently computes reflection and thermal emission components for
both rocky and gaseous planets, considering both homogeneous and inhomogeneous
surfaces or atmospheres. We analyze the phase curves of the gaseous planet
Kepler-7 b and the rocky planet Kepler-10 b using the model. In general, we
find that a hot exoplanet's visible-wavelength phase curve having a significant
phase offset can usually be explained by two classes of solutions: one class
requires a thermal hot spot shifted to one side of the substellar point, and
the other class requires reflective clouds concentrated on the same side of the
substellar point. The two solutions would require very different Bond albedos
to fit the same phase curve; atmospheric circulation models or eclipse
observations at longer wavelengths can effectively rule out one class of
solutions, and thus pinpoint the albedo of the planet, allowing decomposition
of the reflection and the thermal emission components in the phase curve.
Particularly for Kepler-7 b, reflective clouds located on the west side of the
substellar point can best explain its phase curve. We further derive that the
reflectivity of the clear part of the atmosphere should be less than 7% and
that of the cloudy part should be greater than 80% (abridged)Comment: 16 pages, 7 figures, accepted for publication in Ap
THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION
Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.United States. National Aeronautics and Space Administration (NASA Origins and Planetary Atmospheres grant NNX12AI79G))United States. National Aeronautics and Space Administration (NASA Origins and Planetary Atmospheres grant NNX10AB91G
Limits on Clouds and Hazes for the TRAPPIST-1 Planets
The TRAPPIST-1 planetary system is an excellent candidate for study of the
evolution and habitability of M-dwarf planets. Transmission spectroscopy
observations performed with the Hubble Space Telescope (HST) suggest the
innermost five planets do not possess clear hydrogen atmospheres. Here we
reassess these conclusions with recently updated mass constraints and expand
the analysis to include limits on metallicity, cloud top pressure, and the
strength of haze scattering. We connect recent laboratory results of particle
size and production rate for exoplanet hazes to a one-dimensional atmospheric
model for TRAPPIST-1 transmission spectra. Doing so, we obtain a
physically-based estimate of haze scattering cross sections. We find haze
scattering cross sections on the order of 1e-26 to 1e-19 cm squared are needed
in hydrogen-rich atmospheres for TRAPPIST-1 d, e, and f to match the HST data.
For TRAPPIST-1 g, we cannot rule out a clear hydrogen-rich atmosphere. We also
modeled the effects an opaque cloud deck and substantial heavy element content
have on the transmission spectra. We determine that hydrogen-rich atmospheres
with high altitude clouds, at pressures of 12mbar and lower, are consistent
with the HST observations for TRAPPIST-1 d and e. For TRAPPIST-1 f and g, we
cannot rule out clear hydrogen-rich cases to high confidence. We demonstrate
that metallicities of at least 60xsolar with tropospheric (0.1 bar) clouds
agree with observations. Additionally, we provide estimates of the precision
necessary for future observations to disentangle degeneracies in cloud top
pressure and metallicity. Our results suggest secondary, volatile-rich
atmospheres for the outer TRAPPIST-1 planets d, e, and f.Comment: 15 pages, 3 figures, 2 tables, accepted in the Astronomical Journa
High temperature condensate clouds in super-hot Jupiter atmospheres
Deciphering the role of clouds is central to our understanding of exoplanet
atmospheres, as they have a direct impact on the temperature and pressure
structure, and observational properties of the planet. Super-hot Jupiters
occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud
condensation is expected. However, observations of exoplanets such as WASP-12b
(Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy
atmosphere. We re-examine the temperature and pressure space occupied by these
super-hot Jupiter atmospheres, to explore the role of the initial Al- and
Ti-bearing condensates as the main source of cloud material. Due to the high
temperatures a majority of the more common refractory material is not depleted
into deeper layers and would remain in the vapor phase. The lack of depletion
into deeper layers means that these materials with relatively low cloud masses
can become significant absorbers in the upper atmosphere. We provide
condensation curves for the initial Al- and Ti-bearing condensates that may be
used to provide quantitative estimates of the effect of metallicity on cloud
masses, as planets with metal-rich hosts potentially form more opaque clouds
because more mass is available for condensation. Increased metallicity also
pushes the point of condensation to hotter, deeper layers in the planetary
atmosphere further increasing the density of the cloud. We suggest that planets
around metal-rich hosts are more likely to have thick refractory clouds, and
discuss the implication on the observed spectra of WASP-12b.Comment: Accepted for publication in MNRAS, 10 pages, 1 table, 5 figure
Thermal Emission and Albedo Spectra of Super Earths with Flat Transmission Spectra
Planets larger than Earth and smaller than Neptune are some of the most
numerous in the galaxy, but observational efforts to understand this population
have proved challenging because optically thick clouds or hazes at high
altitudes obscure molecular features (Kreidberg et al. 2014b). We present
models of super Earths that include thick clouds and hazes and predict their
transmission, thermal emission, and reflected light spectra. Very thick, lofted
clouds of salts or sulfides in high metallicity (1000x solar) atmospheres
create featureless transmission spectra in the near-infrared. Photochemical
hazes with a range of particle sizes also create featureless transmission
spectra at lower metallicities. Cloudy thermal emission spectra have muted
features more like blackbodies, and hazy thermal emission spectra have emission
features caused by an inversion layer at altitudes where the haze forms. Close
analysis of reflected light from warm (~400-800 K) planets can distinguish
cloudy spectra, which have moderate albedos (0.05-0.20), from hazy models,
which are very dark (0.0-0.03). Reflected light spectra of cold planets (~200
K) accessible to a space-based visible light coronagraph will have high albedos
and large molecular features that will allow them to be more easily
characterized than the warmer transiting planets. We suggest a number of
complementary observations to characterize this population of planets,
including transmission spectra of hot (>1000 K) targets, thermal emission
spectra of warm targets using the James Webb Space Telescope (JWST), high
spectral resolution (R~10^5) observations of cloudy targets, and reflected
light spectral observations of directly-imaged cold targets. Despite the dearth
of features observed in super Earth transmission spectra to date, different
observations will provide rich diagnostics of their atmospheres.Comment: 23 pages, 23 figures. Revised for publication in The Astrophysical
Journa
- …