9 research outputs found

    Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots

    No full text
    Lead-halide-based perovskites have been the subject of numerous recent studies largely motivated by their exceptional performance in solar cells. Electronic and optical properties of these materials have been commonly controlled by varying the composition (<i>e.g.</i>, the halide component) and/or crystal structure. Use of nanostructured forms of perovskites can provide additional means for tailoring their functionalities <i>via</i> effects of quantum confinement and wave function engineering. Furthermore, it may enable applications that explicitly rely on the quantum nature of electronic excitations. Here, we demonstrate that CsPbX<sub>3</sub> quantum dots (X = I, Br) can serve as room-temperature sources of quantum light, as indicated by strong photon antibunching detected in single-dot photoluminescence measurements. We explain this observation by the presence of fast nonradiative Auger recombination, which renders multiexciton states virtually nonemissive and limits the fraction of photon coincidence events to āˆ¼6% on average. We analyze limitations of these quantum dots associated with irreversible photodegradation and fluctuations (ā€œblinkingā€) of the photoluminescence intensity. On the basis of emission intensity-lifetime correlations, we assign the ā€œblinkingā€ behavior to random charging/discharging of the quantum dot driven by photoassisted ionization. This study suggests that perovskite quantum dots hold significant promise for applications such as quantum emitters; however, to realize this goal, one must resolve the problems of photochemical stability and photocharging. These problems are largely similar to those of more traditional quantum dots and, hopefully, can be successfully resolved using advanced methodologies developed over the years in the field of colloidal nanostructures

    Effect of Interfacial Alloying versus ā€œVolume Scalingā€ on Auger Recombination in Compositionally Graded Semiconductor Quantum Dots

    No full text
    Auger recombination is a nonradiative three-particle process wherein the electronā€“hole recombination energy dissipates as a kinetic energy of a third carrier. Auger decay is enhanced in quantum-dot (QD) forms of semiconductor materials compared to their bulk counterparts. Because this process is detrimental to many prospective applications of the QDs, the development of effective approaches for suppressing Auger recombination has been an important goal in the QD field. One such approach involves ā€œsmoothingā€ of the confinement potential, which suppresses the intraband transition involved in the dissipation of the electronā€“hole recombination energy. The present study evaluates the effect of increasing ā€œsmoothnessā€ of the confinement potential on Auger decay employing a series of CdSe/CdS-based QDs wherein the core and the shell are separated by an intermediate layer of a CdSe<sub><i>x</i></sub>S<sub>1ā€“<i>x</i></sub> alloy comprised of 1ā€“5 sublayers with a radially tuned composition. As inferred from single-dot measurements, use of the five-step grading scheme allows for strong suppression of Auger decay for both biexcitons and charged excitons. Further, due to nearly identical emissivities of neutral and charged excitons, these QDs exhibit an interesting phenomenon of lifetime blinking for which random fluctuations of a photoluminescence lifetime occur for a nearly constant emission intensity

    Light Emission Mechanisms in CuInS<sub>2</sub> Quantum Dots Evaluated by Spectral Electrochemistry

    No full text
    Luminescent CuInS<sub>2</sub> (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar IIā€“VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap state whose redox potential is close to that of the Cu<sup><i>x</i></sup> defect state (where <i>x</i> = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use <i>in situ</i> spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs)

    High-Performance CuInS<sub>2</sub> Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    No full text
    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS<sub>2</sub>/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm Ɨ 10 cm device that transmits āˆ¼44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This ā€œdrop-inā€ LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially ā€œnet-zeroā€ buildings

    Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesiumā€“Lead-Halide Perovskite Quantum Dots

    No full text
    Organicā€“inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Csā€“Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX<sub>3</sub> nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of excitonā€“exciton coupling. The overall conclusion of this work is that spectroscopic properties of Csā€“Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the ā€œuniversal volume scalingā€ previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of IIā€“VI nanocrystals

    Thick-Shell CuInS<sub>2</sub>/ZnS Quantum Dots with Suppressed ā€œBlinkingā€ and Narrow Single-Particle Emission Line Widths

    No full text
    Quantum dots (QDs) of ternary Iā€“IIIā€“VI<sub>2</sub> compounds such as CuInS<sub>2</sub> and CuInSe<sub>2</sub> have been actively investigated as heavy-metal-free alternatives to cadmium- and lead-containing semiconductor nanomaterials. One serious limitation of these nanostructures, however, is a large photoluminescence (PL) line width (typically >300 meV), the origin of which is still not fully understood. It remains even unclear whether the observed broadening results from considerable sample heterogeneities (due, e.g., to size polydispersity) or is an unavoidable intrinsic property of individual QDs. Here, we answer this question by conducting single-particle measurements on a new type of CuInS<sub>2</sub> (CIS) QDs with an especially thick ZnS shell. These QDs show a greatly enhanced photostability compared to core-only or thin-shell samples and, importantly, exhibit a strongly suppressed PL blinking at the single-dot level. Spectrally resolved measurements reveal that the single-dot, room-temperature PL line width is much narrower (down to āˆ¼60 meV) than that of the ensemble samples. To explain this distinction, we invoke a model wherein PL from CIS QDs arises from radiative recombination of a delocalized band-edge electron and a localized hole residing on a Cu-related defect and also account for the effects of electronā€“hole Coulomb coupling. We show that random positioning of the emitting center in the QD can lead to more than 300 meV variation in the PL energy, which represents at least one of the reasons for large PL broadening of the ensemble samples. These results suggest that in addition to narrowing size dispersion, future efforts on tightening the emission spectra of these QDs might also attempt decreasing the ā€œpositionalā€ heterogeneity of the emitting centers

    Design and Synthesis of Heterostructured Quantum Dots with Dual Emission in the Visible and Infrared

    No full text
    The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR)-active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intraband relaxation from shell to core states, as evidenced by the emergence of dual emission, <i>i</i>.<i>e</i>., IR photoluminescence from the PbSe core observed simultaneously with visible emission from the CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp coreā€“shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogeneous CdSe nanocrystals was accomplished using insights attained <i>via</i> a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe and the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation

    Two-Photon Absorption in CdSe Colloidal Quantum Dots Compared to Organic Molecules

    No full text
    We discuss fundamental differences in electronic structure as reflected in one- and two-photon absorption spectra of semiconductor quantum dots and organic molecules by performing systematic experimental and theoretical studies of the size-dependent spectra of colloidal quantum dots. Quantum-chemical and effective-mass calculations are used to model the one- and two-photon absorption spectra and compare them with the experimental results. Currently, quantum-chemical calculations are limited to only small-sized quantum dots (nanoclusters) but allow one to study various environmental effects on the optical spectra such as solvation and various surface functionalizations. The effective-mass calculations, on the other hand, are applicable to the larger-sized quantum dots and can, in general, explain the observed trends but are insensitive to solvent and ligand effects. Careful comparison of the experimental and theoretical results allows for quantifying the range of applicability of theoretical methods used in this work. Our study shows that the small clusters can be in principle described in a manner similar to that used for organic molecules. In addition, there are several important factors (quality of passivation, nature of the ligands, and intraband/interband transitions) affecting optical properties of the nanoclusters. The larger-size quantum dots, on the other hand, behave similarly to bulk semiconductors, and can be well described in terms of the effective-mass models

    Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films

    No full text
    The use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, IIā€“VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands. Due to electrostatic stabilization, these QDs are readily dispersible in polar solvents, in which they form highly concentrated solutions that remain stable for months. QDs of all three Pb chalcogenides retain their photoluminescence, allowing for a detailed study of the effect of the surface ionic double layer on electronic passivation of QD surfaces, which we find can be explained using the hard/soft acidā€“base theory. Importantly, we prepare highly conductive films of PbS, PbSe, and PbTe QDs by directly casting from solution without further chemical treatment, as determined by field-effect transistor measurements. This method allows for precise control over the surface chemistry, and therefore the transport properties of deposited films. It also permits single-step deposition of films of unprecedented thickness via continuous processing techniques, as we demonstrate by preparing a dense, smooth, 5.3-Ī¼m-thick PbSe QD film via doctor-blading. As such, it offers important advantages over laborious layer-by-layer methods for solar cells and photodetectors, while opening the door to new possibilities in ionizing-radiation detectors
    corecore