1 research outputs found

    Anisotropy of Chemical Bonding in Semifluorinated Graphite C<sub>2</sub>F Revealed with Angle-Resolved X‑ray Absorption Spectroscopy

    No full text
    Highly oriented pyrolytic graphite characterized by a low misorientation of crystallites is fluorinated using a gaseous mixture of BrF<sub>3</sub> with Br<sub>2</sub> at room temperature. The golden-colored product, easily delaminating into micrometer-size transparent flakes, is an intercalation compound where Br<sub>2</sub> molecules are hosted between fluorinated graphene layers of approximate C<sub>2</sub>F composition. To unravel the chemical bonding in semifluorinated graphite, we apply angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and quantum-chemical modeling. The strong angular dependence of the CK and FK edge NEXAFS spectra on the incident radiation indicates that room-temperature-produced graphite fluoride is a highly anisotropic material, where half of the carbon atoms are covalently bonded with fluorine, while the rest of the carbon atoms preserve π electrons. Comparison of the experimental CK edge spectrum with theoretical spectra plotted for C<sub>2</sub>F models reveals that fluorine atoms are more likely to form chains. This conclusion agrees with the atomic force microscopy observation of a chain-like pattern on the surface of graphite fluoride layers
    corecore