3 research outputs found

    Nontrivial Behavior of Water in the Vicinity and Inside Lipid Bilayers As Probed by Molecular Dynamics Simulations

    No full text
    The atomic-scale diffusion of water in the presence of several lipid bilayers mimicking biomembranes is characterized <i>via</i> unconstrained molecular dynamics (MD) simulations. Although the overall water dynamics corresponds well to literature data, namely, the efficient braking near polar head groups of lipids, a number of interesting and biologically relevant details observed in this work have not been sufficiently discussed so far; for instance, the fact that waters “sense” the membrane unexpectedly early, before water density begins to decrease. In this “transitional zone” the velocity distributions of water and their H-bonding patterns deviate from those in the bulk solution. The boundaries of this zone are well preserved even despite the local (<1 nm size) perturbation of the lipid bilayer, thus indicating a decoupling of the surface and bulk dynamics of water. This is in excellent agreement with recent experimental data. Near the membrane surface, water movement becomes anisotropic, that is, solvent molecules preferentially move outward the bilayer. Deep in the membrane interior, the velocities can even exceed those in the bulk solvent and undergo large-scale fluctuations. The analysis of MD trajectories of individual waters in the middle part of the acyl chain region of lipids reveals a number of interesting rare phenomena, such as the fast (<i>ca.</i> 50 ps) breakthrough across the membrane or long-time (up to 750 ps) “roaming” between lipid leaflets. The analysis of these events was accomplished to delineate the mechanisms of spontaneous water permeation inside the hydrophobic membrane core. It was shown that such nontrivial dynamics of water in an “alien” environment is driven by the dynamic heterogeneities of the local bilayer structure and the formation of transient atomic-scale “defects” in it. The picture observed in lipid bilayers is drastically different from that in a primitive membrane mimic, a hydrated cyclohexane slab. The possible biological impact of such phenomena in equilibrated lipid bilayers is discussed

    Cardiotoxins: Functional Role of Local Conformational Changes

    No full text
    Cardiotoxins (CTs) from snake venoms are a family of homologous highly basic proteins that have extended hydrophobic patterns on their molecular surfaces. CTs are folded into three β-structured loops stabilized by four disulfide bridges. Being well-structured in aqueous solution, most of these proteins are membrane-active, although the exact molecular mechanisms of CT-induced cell damage are still poorly understood. To elucidate the structure–function relationships in CTs, a detailed knowledge of their spatial organization and local conformational dynamics is required. Protein domain motions can be either derived from a set of experimental structures or generated via molecular dynamics (MD). At the same time, traditional clustering algorithms in the Cartesian coordinate space often fail to properly take into account the local large-scale dihedral angle transitions that occur in MD simulations. This is because such perturbations are usually offset by changes in the neighboring dihedrals, thus preserving the overall protein fold. States with a “locally perturbed” backbone were found in experimental 3D models of some globular proteins and have been shown to be functionally meaningful. In this work, the possibility of large-scale dihedral angle transitions in the course of long-term MD in explicit water was explored for three CTs with different membrane activities: CT 1, 2 (Naja oxiana) and CT A3 (Naja atra). Analysis of the MD-derived distributions of backbone torsion angles revealed several important common and specific features in the structural/dynamic behavior of these proteins. First, large-amplitude transitions were detected in some residues located in the functionally important loop I region. The K5/L6 pair of residues was found to induce a perturbation of the hydrophobic patterns on the molecular surface of CTsreversible breaking of a large nonpolar zone (“bottom”) into two smaller ones and their subsequent association. Second, the characteristic sizes of these patterns perfectly coincided with the dimensions of the nonpolar zones on the surfaces of model two-component (zwitterionic/anionic) membranes. Taken together with experimental data on the CT-induced leakage of fluorescent dye from such membranes, these results allowed us to formulate a two-stage mechanism of CT–membrane binding. The principal finding of this study is that even local conformational dynamics of CTs can seriously affect their functional activity via a tuning of the membrane binding site − specific “hot spots” (like the K5/L6 pair) in the protein structure

    Kalium database

    No full text
    <p>Complete copy of Kalium 2.0 database in the CSV format, six .csv files:<br></p> <p>Activity.csv</p> <p>Organism.csv</p> <p>OrganismClass.csv</p> <p>TargetCannel.csv</p> <p>Toxin.csv</p> <p>ToxinFamily.csv</p> <p> </p> <p>export_all_tc.csv contains data in the format of concatenated Ligand cards presented in an expanded manner. This looks similar to the export file, which can be downloaded from Kalium by users, but contains additional information for each entry.</p> <p> </p> <p>In export_all_act.csv each string describes the activity of every Kalium entry against a particular target (potassium channel isoform).</p
    corecore