21 research outputs found

    Evaluation of a Parametric Approach for Estimating Potential Evapotranspiration Across Different Climates

    Get PDF
    AbstractPotential evapotranspiration (PET) is key input in water resources, agricultural and environmental modelling. For many decades, numerous approaches have been proposed for the consistent estimation of PET at several time scales of interest. The most recognized is the Penman-Monteith formula, which is yet difficult to apply in data-scarce areas, since it requires simultaneous observations of four meteorological variables (temperature, sunshine duration, humidity, wind velocity). For this reason, parsimonious models with minimum input data requirements are strongly preferred. Typically, these have been developed and tested for specific hydroclimatic conditions, but when they are applied in different regimes they provide much less reliable (and in some cases misleading) estimates. Therefore, it is essential to develop generic methods that remain parsimonious, in terms of input data and parameterization, yet they also allow for some kind of local adjustment of their parameters, through calibration. In this study we present a recent parametric formula, based on a simplified formulation of the original Penman-Monteith expression, which only requires mean daily or monthly temperature data. The method is evaluated using meteorological records from different areas worldwide, at both the daily and monthly time scales. The outcomes of this extended analysis are very encouraging, as indicated by the substantially high validation scores of the proposed approach across all examined data sets. In general, the parametric model outperforms well-established methods of the everyday practice, since it ensures optimal approximation ofpotential evapotranspiration

    Advances in Evaporation and Evaporative Demand

    No full text
    The importance of evapotranspiration is well-established in various disciplines such as hydrology, agronomy, climatology, and other geosciences [...

    Advances in Evaporation and Evaporative Demand

    No full text
    The importance of evapotranspiration is well-established in various disciplines such as hydrology, agronomy, climatology, and other geosciences [...

    Challenges of Estimation Precision of Irrigation Water Management Parameters Based on Data from Reference Agrometeorological Stations

    No full text
    In this study, operational decision support systems (DSSs) for irrigation water management that utilize data from weather stations (W/S) or weather data services are presented. The challenges and the ways in which various systems address them are summarized based on a review of the relevant scientific literature and information provided on the websites of the systems under consideration. The selected systems that are presented are categorized into those that utilize W/S data (IRMA_SYS, CIMIS, BlueLeaf, CoAgMet) as well as those that employ remote sensing data (Manna irrigation, Irrisat, Sencrop). Remote sensing DSSs are included in this study because their functionality is closely related to that of W/S-based systems, as it is explained in the study. Additionally, Foreca and OpenET are also examined as they provide data to DSSs for irrigation management. The discussion about the challenges encountered in the use of DSSs based on W/S data aims to stimulate further research and development in this field by the scientific community and system developers

    Regional Ombrian Curves: Design Rainfall Estimation for a Spatially Diverse Rainfall Regime

    No full text
    Ombrian curves, i.e., curves linking rainfall intensity to return period and time scale, are well-established engineering tools crucial to the design against stormwaters and floods. Though the at-site construction of such curves is considered a standard hydrological task, it is a rather challenging one when large regions are of interest. Regional modeling of ombrian curves is particularly complex due to the need to account for spatial dependence together with the increased variability of rainfall extremes in space. We develop a framework for the parsimonious modeling of the extreme rainfall properties at any point in a given area. This is achieved by assuming a common ombrian model structure, except for a spatially varying scale parameter which is itself modeled by a spatial smoothing model for the 24 h average annual rainfall maxima that employs elevation as an additional explanatory variable. The fitting is performed on the pooled all-stations data using an advanced estimation procedure (K-moments) that allows both for reliable high-order moment estimation and simultaneous handling of space-dependence bias. The methodology is applied in the Thessaly region, a 13,700 km2 water district of Greece characterized by varying topography and hydrometeorological properties

    RASPOTIONā€”A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling

    No full text
    Regional estimations of Potential Evapotranspiration (PET) are of key interest for a number of geosciences, particularly those that are water-related (hydrology, agrometeorology). Therefore, several models have been developed for the consistent quantification of different time scales (hourly, daily, monthly, annual). During the last few decades, remote sensing techniques have continued to grow rapidly with the simultaneous development of new local and regional evapotranspiration datasets. Here, we develop a novel set T maps over the globe, namely RASPOTION, for the period 2003 to 2016, by integrating: (a) mean climatic data at 4088 stations, extracted by the FAO-CLIMWAT database; (b) mean monthly PET estimates by the Penmanā€“Monteith method, at the aforementioned locations; (c) mean monthly PET estimates by a recently proposed parametric model, calibrated against local Penmanā€“Monteith data; (d) spatially interpolated parameters of the Parametric PET model over the globe, using the Inverse Distance Weighting technique; and (e) remote sensing mean monthly air temperature data. The RASPOTION dataset was validated with in situ samples (USA, Germany, Spain, Ireland, Greece, Australia, China) and by using a spatial Penmanā€“Monteith estimates in England. The results in both cases are satisfactory. The main objective is to demonstrate the practical usefulness of these PET map products across different research disciplines and spatiotemporal scales, towards assisting decision making for both short- and long-term hydro-climatic policy actions

    Application of a Generic Participatory Decision Support System for Irrigation Management for the Case of a Wine Grapevine at Epirus, Northwest Greece

    No full text
    In southern Europe, irrigation is the major water user and thus, development of operational tools that support decisions aiming to improve irrigation management, is of great importance. In this study, a web-based participatory decision support system for irrigation management (DSS), based on the principles of UN FAOā€™s paper 56, without requirement for any special monitoring hardware to be installed in each field, is evaluated for the case of a commercial wine grapevine (Vitis vinifera ā€˜Vertzamiā€™) located at Epirus (northwest Greece), for two successive years (2021 and 2022). The soil moisture time series that were generated by the DSSā€™s model were compared to those measured by soil moisture sensors. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) ranged between 2.98ā€“3.22% and 3.63ā€“4.06%, respectively, under various irrigation practices and goals. Irrigation resulted very high yields and Crop Water Productivity (WPC) was 20ā€“44% improved when following the DSSā€™s recommendations. The results also confirm potential pitfalls of sensor-based soil moisture monitoring and rainfall estimations using mathematical models. Finally, the value of water meters as practical sensors, which could support efficient irrigation management, is underlined. In every case, mindful application of decision support systems that require minimum or no hardware to be installed in each field, could extensively support growers and agronomic consultants to test, document and disseminate good practices and calculate environmental indices

    Evaluation of BOLAM Fine Grid Weather Forecasts with Emphasis on Hydrological Applications

    No full text
    The evaluation of weather forecast accuracy is of major interest in decision making in almost every sector of the economy and in civil protection. To this, a detailed assessment of Bologna Limited-Area Model (BOLAM) seven days fine grid 3 h predictions is made for precipitation, air temperature, relative humidity, and wind speed over a large lowland agricultural area of a Mediterranean-type climate, characterized by hot summers and rainy moderate winters (plain of Arta, NW Greece). Timeseries that cover a four-year period (2016ā€“2019) from seven agro-meteorological stations located at the study area are used to run a range of contingency and accuracy measures as well as Taylor diagrams, and the results are thoroughly discussed. The overall results showed that the model failed to comply with the precipitation regime throughout the study area, while the results were mediocre for wind speed. Considering relative humidity, the results revealed acceptable performance and good correlation between the model output and the observed values, for the early days of forecast. Only in air temperature, the forecasts exhibited very good performance. Discussion is made on the ability of the model to predict major rainfall events and to estimate water budget components as rainfall and reference evapotranspiration. The need for skilled weather forecasts from improved versions of the examined model that may incorporate post-processing techniques to improve predictions or from other forecasting services is underlined
    corecore