3 research outputs found

    Yttrium Hydride Nanoantennas for Active Plasmonics

    No full text
    A key challenge for the development of active plasmonic nanodevices is the lack of materials with fully controllable plasmonic properties. In this work, we demonstrate that a plasmonic resonance in top-down nanofabricated yttrium antennas can be completely and reversibly turned on and off using hydrogen exposure. We fabricate arrays of yttrium nanorods and optically observe, in extinction spectra, the hydrogen-induced phase transition between the metallic yttrium dihydride and the insulating trihydride. Whereas the yttrium dihydride nanostructures exhibit a pronounced particle plasmon resonance, the transition to yttrium trihydride leads to a complete vanishing of the resonant behavior. The plasmonic resonance in the dihydride state can be tuned over a wide wavelength range by simply varying the size of the nanostructures. Furthermore, we develop an analytical diffusion model to explain the temporal behavior of the hydrogen loading and unloading trajectories observed in our experiments and gain information about the thermodynamics of our device. Thus, our nanorod system serves as a versatile basic building block for active plasmonic devices ranging from switchable perfect absorbers to active local heating control elements

    Niobium as Alternative Material for Refractory and Active Plasmonics

    No full text
    The development of stable compounds for durable optics is crucial for the future of plasmonic applications. Even though niobium is mainly known as a superconducting material, it can qualify as an alternative material for high-temperature and active plasmonic applications. We utilize electron beam lithography combined with plasma etching techniques to fabricate nanoantenna arrays of niobium. Tailoring the niobium antenna geometry enables precise tuning of the plasmon resonances from the near- to the mid-infrared spectral range. Additionally, the hydrogen absorptivity as well as the high-temperature stability of the antennas have been investigated. Further advantages of niobium such as superconductivity make niobium highly attractive for a multitude of plasmonic devices ranging from active and refractory perfect absorbers/emitters to plasmon-based single photon detectors

    Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas

    No full text
    Titanium nitride (TiN) is a novel refractory plasmonic material which can sustain high temperatures and exhibits large optical nonlinearities, potentially opening the door for high-power nonlinear plasmonic applications. We fabricate TiN nanoantenna arrays with plasmonic resonances tunable in the range of about 950–1050 nm by changing the antenna length. We present second-harmonic (SH) spectroscopy of TiN nanoantenna arrays, which is analyzed using a nonlinear oscillator model with a wavelength-dependent second-order response from the material itself. Furthermore, characterization of the robustness upon strong laser illumination confirms that the TiN antennas are able to endure laser irradiation with high peak intensity up to 15 GW/cm<sup>2</sup> without changing their optical properties and their physical appearance. They outperform gold antennas by one order of magnitude regarding laser power sustainability. Thus, TiN nanoantennas could serve as promising candidates for high-power/high-temperature applications such as coherent nonlinear converters and local heat sources on the nanoscale
    corecore