159 research outputs found

    Muon Collider Machine-Detector Interface

    Full text link
    The deleterious effects of the background and radiation environment produced by the decaying muon beam are studied in the Muon Collider Interaction Region, detector and Machine-Detector Interface designs.Comment: 6 p

    Ultra-Fast Hadronic Calorimetry

    Full text link
    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respect to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.Comment: 10 pages, 16 figures, accepted for publication in NIM

    Neutrino Radiation at Muon Colliders and Storage Rings

    Get PDF
    Intense highly collimated neutrino beams, created from muon decays at high-energy muon colliders or storage rings, cause significant radiation problems even at very large distances from the machine. A recently developed weighted neutrino interaction generator permits detailed Monte Carlo simulations of the interactions of neutrinos and of their progeny with the MARS code. Special aspects of neutrino radiation dose evaluation are discussed. Dose distributions in a tissue-equivalent phantom are calculated when irradiated with 100 MeV to 10 TeV neutrino beams. Results are obtained for a bare phantom, one embedded in several shielding materials, and one located at various distances behind a shield. Neutrino radiation is investigated around muon storage rings serving as the basis for neutrino factories. The most challenging problem of off-site neutrino dose from muon colliders and storage rings is studied. The distance from the collider ring (up to 60 km) at which the expected dose rates equals prescribed annual dose limits is calculated for 0.5--4 TeV muon colliders and 30 and 50 GeV muon storage rings. Possible mitigation of neutrino radiation problems are discussed and investigated
    • ā€¦
    corecore