3 research outputs found

    Discovery and Optimization of Small Molecule Splicing Modifiers of Survival Motor Neuron 2 as a Treatment for Spinal Muscular Atrophy

    No full text
    The underlying cause of spinal muscular atrophy (SMA) is a deficiency of the survival motor neuron (SMN) protein. Starting from hits identified in a high-throughput screening campaign and through structure–activity relationship investigations, we have developed small molecules that potently shift the alternative splicing of the <i>SMN2</i> exon 7, resulting in increased production of the full-length SMN mRNA and protein. Three novel chemical series, represented by compounds <b>9</b>, <b>14</b>, and <b>20</b>, have been optimized to increase the level of SMN protein by >50% in SMA patient-derived fibroblasts at concentrations of <160 nM. Daily administration of these compounds to severe SMA Δ7 mice results in an increased production of SMN protein in disease-relevant tissues and a significant increase in median survival time in a dose-dependent manner. Our work supports the development of an orally administered small molecule for the treatment of patients with SMA

    Discovery of Risdiplam, a Selective Survival of Motor Neuron‑2 (<i>SMN2</i>) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA)

    No full text
    SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound <b>2</b> was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of <b>1</b> (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA

    Discovery of Risdiplam, a Selective Survival of Motor Neuron‑2 (<i>SMN2</i>) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA)

    No full text
    SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound <b>2</b> was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of <b>1</b> (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA
    corecore