5 research outputs found

    Identification of sex determination genes and their evolution in Phlebotominae sand flies (Diptera, Nematocera)

    Get PDF
    Phlebotomine sand flies (Diptera, Nematocera) are important vectors of several pathogens, including Leishmania parasites, causing serious diseases of humans and dogs. Despite their importance as disease vectors, most aspects of sand fly biology remain unknown including the molecular basis of their reproduction and sex determination, aspects also relevant for the development of novel vector control strategies

    Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources.

    No full text
    During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods' proteins. In the sialome, all proteins typical for sand fly saliva were identified-antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5'nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice

    Exposure to Leishmania spp. and sand flies in domestic animals in northwestern Ethiopia

    No full text
    WOS:000357470300003 PMID: 26152578Background: Human visceral leishmaniasis caused by Leishmania donovani is considered an anthroponosis; however, Leishmania-infected animals have been increasingly reported in L. donovani foci, and the role of these animals as reservoirs for human L. donovani infection remains unclear. Methods: We conducted a study of domestic animals (goats, sheep, cows, dogs, and donkeys) in three L. donovani foci in northwestern Ethiopia. Domestic animals were screened for Leishmania DNA and for anti-L. donovani IgG. Serum anti-sand fly saliva antibodies were used as a marker of exposure to the vector sand fly, Phlebotomus orientalis. Results: Of 546 animals tested, 32 (5.9 %) were positive for Leishmania DNA, with positive animals identified among all species studied. Sequencing indicated that the animals were infected with parasites of the L. donovani complex but could not distinguish between L. infantum and L. donovani. A total of 18.9 % of the animals were seropositive for anti-L. donovani IgG, and 23.1 % of the animals were seropositive for anti-P. orientalis saliva IgG, with the highest seroprevalence observed in dogs and sheep. A positive correlation was found between anti-P. orientalis saliva and anti-L. donovani IgGs in cows, goats, and sheep. Conclusions: The detection of L. donovani complex DNA in the blood of domestic animals, the reported seroprevalence to the L. donovani antigen, and the widespread exposure to sand fly saliva among domestic animals indicate that they are frequently exposed to Leishmania infection and are likely to participate in the epidemiology of Leishmania infection, either as potential blood sources for sand flies or possibly as parasite hosts.publishersversionpublishe
    corecore