1,921 research outputs found
Sustainable Design of Buildings using Semantic BIM and Semantic Web Services
In response to the growing concerns about climate change and the environment, sustainable design of buildings is increasingly demanded by building owners and users. However, fast evaluation of various design options and identification of the optimized design requires application of design analysis tools such as energy modeling, daylight simulations, and natural ventilation analysis software. Energy analysis requires access to distributed sources of information such as building element material properties provided by designers, mechanical equipment information provided by equipment manufacturers, weather data provided by weather reporting agencies, and energy cost data from energy providers. Gathering energy related information from different sources and inputting the information to an energy analysis application is a time consuming process. This causes delays and increases the time for comparing different design alternatives. This paper discusses how Semantic Web technology can facilitate information collection from several sources for energy analysis. Semantic Web enables sharing, accessing, and combining information over the Internet in a machine process-able format. This would free building designers to concentrate on building design optimization rather than spending time on data preparation and manual entry into energy analysis applications
Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies
A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities
The Atkinson Theorem in Hilbert C*-Modules Over C*-Algebras of Compact Operators
In this paper the concept of unbounded Fredholm operators on Hilbert C*-
modules over an arbitrary C*-algebra is discussed and the Atkinson theorem is
generalized for bounded and unbounded Feredholm operators on Hilbert C*-modules
over C*-algebras of compact operators. In the framework of Hilbert C*-modules
over C*-algebras of compact operators, the index of an unbounded Fredholm
operator and the index of its bounded transform are the same.Comment: 8 pages, the proof of the Theorem 2.3 was omitted, to appear in
Abstract and Applied Analysi
A Shared Ontology Approach to Semantic Representation of BIM Data
Architecture, engineering, construction and facility management (AEC-FM) projects involve a large number of participants that must exchange information and combine their knowledge for successful completion of a project. Currently, most of the AEC-FM domains store their information about a project in text documents or use XML, relational, or object-oriented formats that make information integration difficult. The AEC-FM industry is not taking advantage of the full potential of the Semantic Web for streamlining sharing, connecting, and combining information from different domains. The Semantic Web is designed to solve the information integration problem by creating a web of structured and connected data that can be processed by machines. It allows combining information from different sources with different underlying schemas distributed over the Internet. In the Semantic Web, all data instances and data schema are stored in a graph data store, which makes it easy to merge data from different sources. This paper presents a shared ontology approach to semantic representation of building information. The semantic representation of building information facilitates finding and integrating building information distributed in several knowledge bases. A case study demonstrates the development of a semantic based building design knowledge base
Modeling, Analysis, and Hard Real-time Scheduling of Adaptive Streaming Applications
In real-time systems, the application's behavior has to be predictable at
compile-time to guarantee timing constraints. However, modern streaming
applications which exhibit adaptive behavior due to mode switching at run-time,
may degrade system predictability due to unknown behavior of the application
during mode transitions. Therefore, proper temporal analysis during mode
transitions is imperative to preserve system predictability. To this end, in
this paper, we initially introduce Mode Aware Data Flow (MADF) which is our new
predictable Model of Computation (MoC) to efficiently capture the behavior of
adaptive streaming applications. Then, as an important part of the operational
semantics of MADF, we propose the Maximum-Overlap Offset (MOO) which is our
novel protocol for mode transitions. The main advantage of this transition
protocol is that, in contrast to self-timed transition protocols, it avoids
timing interference between modes upon mode transitions. As a result, any mode
transition can be analyzed independently from the mode transitions that
occurred in the past. Based on this transition protocol, we propose a hard
real-time analysis as well to guarantee timing constraints by avoiding
processor overloading during mode transitions. Therefore, using this protocol,
we can derive a lower bound and an upper bound on the earliest starting time of
the tasks in the new mode during mode transitions in such a way that hard
real-time constraints are respected.Comment: Accepted for presentation at EMSOFT 2018 and for publication in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) as part of the ESWEEK-TCAD special issu
- …