2 research outputs found

    Transport Barriers Influence the Activation of Anti‐Tumor Immunity: A Systems Biology Analysis

    Get PDF
    Abstract Effective anti‐cancer immune responses require activation of one or more naïve T cells. If the correct naïve T cell encounters its cognate antigen presented by an antigen presenting cell, then the T cell can activate and proliferate. Here, mathematical modeling is used to explore the possibility that immune activation in lymph nodes is a rate‐limiting step in anti‐cancer immunity and can affect response rates to immune checkpoint therapy. The model provides a mechanistic framework for optimizing cancer immunotherapy and developing testable solutions to unleash anti‐tumor immune responses for more patients with cancer. The results show that antigen production rate and trafficking of naïve T cells into the lymph nodes are key parameters and that treatments designed to enhance tumor antigen production can improve immune checkpoint therapies. The model underscores the potential of radiation therapy in augmenting tumor immunogenicity and neoantigen production for improved ICB therapy, while emphasizing the need for careful consideration in cases where antigen levels are already sufficient to avoid compromising the immune response

    Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma.

    Get PDF
    OBJECTIVE Intrahepatic cholangiocarcinoma (ICC)-a rare liver malignancy with limited therapeutic options-is characterised by aggressive progression, desmoplasia and vascular abnormalities. The aim of this study was to determine the role of placental growth factor (PlGF) in ICC progression. DESIGN We evaluated the expression of PlGF in specimens from ICC patients and assessed the therapeutic effect of genetic or pharmacologic inhibition of PlGF in orthotopically grafted ICC mouse models. We evaluated the impact of PlGF stimulation or blockade in ICC cells and cancer-associated fibroblasts (CAFs) using in vitro 3-D coculture systems. RESULTS PlGF levels were elevated in human ICC stromal cells and circulating blood plasma and were associated with disease progression. Single-cell RNA sequencing showed that the major impact of PlGF blockade in mice was enrichment of quiescent CAFs, characterised by high gene transcription levels related to the Akt pathway, glycolysis and hypoxia signalling. PlGF blockade suppressed Akt phosphorylation and myofibroblast activation in ICC-derived CAFs. PlGF blockade also reduced desmoplasia and tissue stiffness, which resulted in reopening of collapsed tumour vessels and improved blood perfusion, while reducing ICC cell invasion. Moreover, PlGF blockade enhanced the efficacy of standard chemotherapy in mice-bearing ICC.ConclusionPlGF blockade leads to a reduction in intratumorous hypoxia and metastatic dissemination, enhanced chemotherapy sensitivity and increased survival in mice-bearing aggressive ICC
    corecore