111 research outputs found

    Conducting research in individual patients: lessons learnt from two series of N-of-1 trials

    Get PDF
    BACKGROUND: Double-blind randomised N-of-1 trials (N-of-1 trials) may help with decisions concerning treatment when there is doubt regarding the effectiveness and suitability of medication for individual patients. The patient is his or her own control, and receives the experimental and the control treatment during several periods of time in random order. Reports of N-of-1 trials are still relatively scarce, and the research methodology is not as firmly established as that of RCTs. Recently, we have conducted two series of N-of-1 trials in general practice. Before, during, and after data-collection, difficulties regarding outcome assessment, analysis of the results, the withdrawal of patients, and the follow-up had to be dealt with. These difficulties are described and our solutions are discussed. DISCUSSION: To prevent or anticipate difficulties in N-of-1 trials, we argue that that it is important to individualise the outcome measures, and to carefully consider the objective, type of randomisation and the analysis. It is recommended to use the same dosages and dosage forms that the patient used before the trial, to start the trial with a run-in period, to formulate both general and individualised decision rules regarding the efficacy of treatment, to adjust treatment policies immediately after the trial, and to provide adequate instructions and support if treatment is adjusted. SUMMARY: Because of the specific characteristics of N-of-1 trials it is difficult to formulate general 'how to do it' guidelines for designing N-of-1 trials. However, when the design of each N-of-1 trial is tailored to the specific characteristics of each individual patient and the underlying medical problem, most difficulties in N-of-1 trials can be prevented or overcome. In this way, N-of-1 trials may be of help when deciding on drug treatment for individual patients

    Pregabalin versus placebo in targeting pro-nociceptive mechanisms to prevent chronic pain after whiplash injury in at-risk individuals – a feasibility study for a randomised controlled trial

    Get PDF
    Abstract Background Whiplash-associated disorders (WAD) are an enormous and costly burden to Australian society. Up to 50% of people who experience a whiplash injury will never fully recover. Whiplash is resistant to treatment and no early management approach has yet been shown to prevent chronic pain. The early presence of central sensitization is associated with poor recovery. Pregabalin’s effects on central sensitization indicate the potential to prevent or modulate these processes after whiplash injury and to improve health outcomes, but this has not been investigated. This paper describes the protocol for a feasibility study for a randomised controlled trial of pregabalin plus evidence-based advice compared to placebo plus evidence-based advice for individuals with acute whiplash injury who are at risk of poor recovery. Methods This double blind, placebo-controlled randomised feasibility study will examine the feasibility and potential effectiveness of pregabalin and evidence-based advice (intervention) compared to placebo and evidence-based advice (control) for individuals with acute whiplash injury at risk of poor recovery. Thirty participants (15 per group) aged 18–65 years with Grade II WAD, within 48 hours of injury and currently experiencing at least moderate pain (NRS: ≥ 5/10) will be recruited from Emergency Departments of public hospitals in Queensland, Australia. Pregabalin will be commenced at 75 mg bd and titrated up to 300 mg bd as tolerated for 4 weeks followed by 1 week of weaning. Results The feasibility of trial procedures will be tested, as well as the potential effect of the intervention on the outcomes. The primary outcome of neck pain intensity at 3 months from randomisation will be compared between the treatment groups using standard analysis of variance techniques. Discussion Feasibility and potential effectiveness data will inform an appropriately powered full trial, which if successful, will provide an effective and cost-effective intervention for a costly and treatment resistant condition. It will also have implications for the early management of other traumatic conditions beyond whiplash. Trial registration Clinical Trials Primary Registry: Australian and New Zealand Clinical Trials Registry. Clinical Trial Registration Number: ACTRN12617000059369 . Date of Registration: 11/01/2017. Primary Trial Sponsor: The University of Queensland, Brisbane QLD 4072 Australia

    Assessment of Biologically Effective Solar Ultraviolet Exposures for Court Staff and Competitors During a Major Australian Tennis Tournament

    Get PDF
    Sport is an integral and enduring part of many societies, such as Australia. Participation in outdoor sports, such as tennis, comes with a very real risk of dangerous solar ultraviolet exposure which can result in erythema (sunburn), serious conditions such as skin cancer, including melanoma, and eye conditions such as cataracts and pterygium. This study remotely assesses the effective ultraviolet exposures in response to the increased sun safety awareness at a major summertime tennis tournament in Australia. The assessment only uses publicly accessible data and information. It was found that tournament organizers have effectively adopted sun-safe protocols into the uniform policy that the court officials (judges and ball kids) are mandated to follow. The combination of sun-participant geometry and the photoprotection provided by uniforms significantly reduced the ambient ultraviolet exposure, which was recorded to be as high as 9.9 SED/h, to just 1.0 and 0.5 SED/h for ball kids and judges, respectively, compared to up to 2.0 SED/h for players. Even though caution is needed against complacency with sun safety, with the need for the court officials and the players to still apply sunscreen, the court officials provided persistent visual role modeling of sun-safe behaviors

    Pro-autophagic signal induction by bacterial pore-forming toxins

    Get PDF
    Pore-forming toxins (PFT) comprise a large, structurally heterogeneous group of bacterial protein toxins. Nucleated target cells mount complex responses which allow them to survive moderate membrane damage by PFT. Autophagy has recently been implicated in responses to various PFT, but how this process is triggered is not known, and the significance of the phenomenon is not understood. Here, we show that S. aureus α-toxin, Vibrio cholerae cytolysin, streptolysin O and E. coli haemolysin activate two pathways leading to autophagy. The first pathway is triggered via AMP-activated protein kinase (AMPK). AMPK is a major energy sensor which induces autophagy by inhibiting the target of rapamycin complex 1 (TORC1) in response to a drop of the cellular ATP/AMP-ratio, as is also observed in response to membrane perforation. The second pathway is activated by the conserved eIF2α-kinase GCN2, which causes global translational arrest and promotes autophagy in response to starvation. The latter could be accounted for by impaired amino acid transport into target cells. Notably, PKR, an eIF2α-kinase which has been implicated in autophagy induction during viral infection, was also activated upon membrane perforation, and evidence was obtained that phosphorylation of eIF2α is required for the accumulation of autophagosomes in α-toxin-treated cells. Treatment with 3-methyl-adenine inhibited autophagy and disrupted the ability of cells to recover from sublethal attack by S. aureus α-toxin. We propose that PFT induce pro-autophagic signals through membrane perforation–dependent nutrient and energy depletion, and that an important function of autophagy in this context is to maintain metabolic homoeostasis

    Dendritic Cell-Mediated-Immunization with Xenogenic PrP and Adenoviral Vectors Breaks Tolerance and Prolongs Mice Survival against Experimental Scrapie

    Get PDF
    In prion diseases, PrPc, a widely expressed protein, is transformed into a pathogenic form called PrPSc, which is in itself infectious. Antibodies directed against PrPc have been shown to inhibit PrPc to PrPSc conversion in vitro and protect in vivo from disease. Other effectors with potential to eliminate PrPSc-producing cells are cytotoxic T cells directed against PrP-derived peptides but their ability to protect or to induce deleterious autoimmune reactions is not known. The natural tolerance to PrPc makes difficult to raise efficient adaptive responses. To break tolerance, adenovirus (Ad) encoding human PrP (hPrP) or control Ad were administered to wild-type mice by direct injection or by transfer of Ad-transduced dendritic cells (DCs). Control Ad-transduced DCs from Tg650 mice overexpressing hPrP were also used for immunization. DC-mediated but not direct administration of AdhPrP elicited antibodies that bound to murine native PrPc. Frequencies of PrP-specific IFNγ-secreting T cells were low and in vivo lytic activity only targeted cells strongly expressing hPrP. Immunohistochemical analysis revealed that CD3+ T cell infiltration was similar in the brain of vaccinated and unvaccinated 139A-infected mice suggesting the absence of autoimmune reactions. Early splenic PrPSc replication was strongly inhibited ten weeks post infection and mean survival time prolonged from 209 days in untreated 139A-infected mice to 246 days in mice vaccinated with DCs expressing the hPrP. The efficacy appeared to be associated with antibody but not with cytotoxic cell-mediated PrP-specific responses
    corecore