26 research outputs found

    Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome.

    Get PDF
    The role of immune or infective triggers in the pathogenesis of Chronic Fatigue Syndrome (CFS) is not yet fully understood. Barriers to obtaining immune measures at baseline (i.e., before the trigger) in CFS and post-infective fatigue model cohorts have prevented the study of pre-existing immune dysfunction and subsequent immune changes in response to the trigger. This study presents interferon-alpha (IFN-α)-induced persistent fatigue as a model of CFS. IFN-α, which is used in the treatment of chronic Hepatitis C Virus (HCV) infection, induces a persistent fatigue in some individuals, which does not abate post-treatment, that is, once there is no longer immune activation. This model allows for the assessment of patients before and during exposure to the immune trigger, and afterwards when the original trigger is no longer present. Fifty-five patients undergoing IFN-α treatment for chronic HCV were assessed at baseline, during the 6-12 months of IFN-α treatment, and at six-months post-treatment. Measures of fatigue, cytokines and kynurenine pathway metabolites were obtained. Fifty-four CFS patients and 57 healthy volunteers completed the same measures at a one-off assessment, which were compared with post-treatment follow-up measures from the HCV patients. Eighteen patients undergoing IFN-α treatment (33%) were subsequently defined as having 'persistent fatigue' (the proposed model for CFS), if their levels of fatigue were higher six-months post-treatment than at baseline; the other 67% were considered 'resolved fatigue'. Patients who went on to develop persistent fatigue experienced a greater increase in fatigue symptoms over the first four weeks of IFN-α, compared with patients who did not (Δ Treatment Week (TW)-0 vs. TW4; PF: 7.1 ± 1.5 vs. RF: 4.0 ± 0.8, p = 0.046). Moreover, there was a trend towards increased baseline interleukin (IL)-6, and significantly higher baseline IL-10 levels, as well as higher levels of these cytokines in response to IFN-α treatment, alongside concurrent increases in fatigue. Levels increased to more than double those of the other patients by Treatment Week (TW)4 (p =  0.011 for IL-6 and p = 0.001 for IL-10). There was no evidence of an association between persistent fatigue and peripheral inflammation six-months post-treatment, nor did we observe peripheral inflammation in the CFS cohort. While there were changes in kynurenine metabolites in response to IFN-α, there was no association with persistent fatigue. CFS patients had lower levels of the ratio of kynurenine to tryptophan and 3-hydroxykynurenine than controls. Future studies are needed to elucidate the mechanisms behind the initial exaggerated response of the immune system in those who go on to experience persistent fatigue even if the immune trigger is no longer present, and the change from acute to chronic fatigue in the absence of continued peripheral immune activation

    Transcriptomics in Interferon-α-Treated Patients Identifies Inflammation-, Neuroplasticity- and Oxidative Stress-Related Signatures as Predictors and Correlates of Depression

    Get PDF
    Owing to the unique opportunity to assess individuals before and after they develop depression within a short timeframe, interferon-α (IFN-α) treatment for chronic hepatitis C virus (HCV) infection is an ideal model to identify molecular mechanisms relevant to major depression, especially in the context of enhanced inflammation. Fifty-eight patients were assessed prospectively, at baseline and monthly over 24 weeks of IFN-α treatment. New-onset cases of depression were determined using the Mini International Neuropsychiatric Interview (MINI). Whole-blood transcriptomic analyses were conducted to investigate the following: (1) baseline gene expression differences associated with future development of IFN-α-induced depression, before IFN-α, and (2) longitudinal gene expression changes from baseline to weeks 4 or 24 of IFN-α treatment, separately in those who did and did not develop depression. Transcriptomics data were analyzed using Partek Genomics Suite (1.4-fold, FDR adjusted pless than or equal to0.05) and Ingenuity Pathway Analysis Software. Twenty patients (34%) developed IFN-α-induced depression. At baseline, 73 genes were differentially expressed in patients who later developed depression compared with those who did not. After 4 weeks of IFN-α treatment, 592 genes were modulated in the whole sample, representing primarily IFN-α-responsive genes. Substantially more genes were modulated only in patients who developed depression (n=506, compared with n=70 in patients who did not), with enrichment in inflammation-, neuroplasticity- and oxidative stress-related pathways. A similar picture was observed at week 24. Our data indicate that patients who develop IFN-α-induced depression have an increased biological sensitivity to IFN-α, as shown by larger gene expression changes, and specific signatures both as predictors and as correlates

    Inflammatory biomarkers in Alzheimer's disease plasma

    Get PDF
    Introduction: Plasma biomarkers for Alzheimer's disease (AD)diagnosis/stratification are a “Holy Grail” of AD research and intensively sought; however, there are no well-established plasma markers. Methods: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262)subjects from AddNeuroMed. Results: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1)that, age/APOε4 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1)that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH)plus age predicted MCI progression to AD (AUC: 0.71). Discussion: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer’s disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer’s disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer’s disease and other tau-mediated neurodegenerative diseases

    PET imaging shows no changes in TSPO brain density after IFN-α immune challenge in healthy human volunteers

    Get PDF
    Depression is associated with peripheral inflammation, but its link with brain microglial activity remains unclear. In seven healthy males, we used repeated translocator protein-Positron Emission Tomography (TSPO-PET) dynamic scans with [11C]PBR28 to image brain microglial activation before and 24 h after the immune challenge interferon (IFN)-α. We also investigated the association between changes in peripheral inflammation, changes in microglial activity, and changes in mood. IFN-α administration decreased [11C]PBR28 PET tissue volume of distribution (Vt) across the brain (−20 ± 4%; t6 = 4.1, p = 0.01), but after correction for radioligand free-plasma fraction there were no longer any changes (+23 ± 31%; t = 0.1, p = 0.91). IFN-α increased serum IL-6 (1826 ± 513%, t6 = −7.5, p < 0.001), IL-7 (39 ± 12%, t6 = −3.6, p = 0.01), IL-10 (328 ± 48%, t6 = −12.8, p < 0.001), and IFN-γ (272 ± 64%, t6 = −7.0, p < 0.001) at 4–6 h, and increased serum TNF-α (49 ± 7.6%, t6 = −7.5, p < 0.001), IL-8 (39 ± 12%, t6 = −3.5, p = 0.013), and C-reactive protein (1320 ± 459%, t6 = −7.2, p < 0.001) at 24 h. IFN-α induced temporary mood changes and sickness symptoms after 4–6 h, measured as an increase in POMS-2 total mood score, confusion and fatigue, and a decrease in vigor and friendliness (all p ≤ 0.04). No association was found between changes in peripheral inflammation and changes in PET or mood measures. Our work suggests that brain TSPO-PET signal is highly dependent of inflammation-induced changes in ligand binding to plasma proteins. This limits its usefulness as a sensitive marker of neuroinflammation and consequently, data interpretation. Thus, our results can be interpreted as showing either that [11C]PBR28 is not sensitive enough under these conditions, or that there is simply no microglial activation in this model
    corecore