2 research outputs found

    Risk of sperm disorders and impaired fertility in frozen–thawed bull semen: a genome-wide association study

    Get PDF
    Simple Summary This study tackles the genetic aspects of the risk of sperm damage and related impaired fertility when handling frozen–thawed bull semen for artificial insemination. To this end, we performed genomic association analysis to identify relevant genetic markers and candidate genes associated with various abnormalities in frozen–thawed Holstein cattle sperm. The results provide important insights into the molecular mechanisms underlying sperm morphology and abnormalities after cryopreservation. Further research is needed to explore causative genetic variants and implement these findings to improve animal reproduction and breeding. Abstract Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding

    [Studying the structure of a gene pool population of the Russian White chicken breed by genome-wide SNP scan] Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структуры Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π½ΠΎΠΉ популяции русской Π±Π΅Π»ΠΎΠΉ ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ ΠΊΡƒΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ SNP-сканирования

    No full text
    A population of the Russian White chickens, bred at the gene pool farm of ARRIFAGB for 25 generations using individual selection, is characterized by resistance to a lowered temperature in the early postnatal period and white colour of the embryonic down. In 2002-2012, breeding was carried out by panmixia, and by now a new population of the Russian White chickens has been formed on the basis of the surviving stock. Comparison of the genetic variability of this population and the archival DNA of representatives of the 2001 population using microarray screening technology will help to assess the population structure and the preservation of the unique characteristics of its genome. The material for the study was DNA extracted from 162 chicken blood samples. Two groups of the Russian White breed were studied, the 2001 population and the current population. Genome-wide analysis using single nucleotide markers (SNP) included screening by means of the Illumina Chicken 60K SNP iSelect BeadChip microarray. Quality control of genotyping, determination of the population genetic structure by multidimensional scaling (MDS), calculation of linkage disequilibrium (LD) and allele frequency in the groups were carried out using PLINK 1.9 software program. The construction of a cluster delimitation model based on SNP genotypes was carried out using the ADMIXTURE program. According to the MDS analysis results, the current population can be divided into four MDS groups, which, when compared to the data of the pedigree, adequately reflect the origin of the studied individuals. The representatives of the ancestral population were genetically similar to the MDS3 group of the current population. Using the F-statistic of the two-way analysis of variance, a significant effect of the group, chromosome, chromosome in the group, and the distance between SNP markers on LD (r2) values was observed. In the 2001 group, the maximum r2 and the high incidence of LD equal to 1 were observed for all chromosomes, with a distance between SNP markers being 500-1000 Kb. There was also the greatest number of monomorphic alleles in this group. Based on the SNP analysis, we may conclude that the current Russian White chicken population is characterized by the disintegration of long LD regions of the ancestral population. Modelling clusters using the ADMIXTURE program revealed differences between the current population groups determined by MDS analysis. The groups composed of individuals included in MDS1 and MDS2 had a homogeneous structure and differed from each other at K = 4 and K = 5. The MDS4 group formed a genetically heterogeneous cluster different from the MDS1 and MDS2 groups at K of 2-5. The MDS3 group was phylogenetically close to the 2001 population (at K of 2-5). In general, the analysis of the current gene pool population of the Russian White chickens showed its heterogeneity while one of its groups (MDS3) was similar to the ancestral population of 2001, which in turn is characterized by a large number of monomorphic alleles and a high frequency of long LD regions. Thus, SNP scanning allowed evaluating the genetic similarity of individuals and the population structure of the Russian White chicken breed. Understanding the genetic structure is an important point in the panmictic breeding and tracking of historical changes in the molecular organization of the genome of a gene pool population with a limited number of animals. ΠŸΠΎΠΏΡƒΠ»ΡΡ†ΠΈΡ русских Π±Π΅Π»Ρ‹Ρ… ΠΊΡƒΡ€ ΡΠ΅Π»Π΅ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π»Π°ΡΡŒ Π² Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π½ΠΎΠΌ хозяйствС ВсСроссийского НИИ Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ ΠΈ развСдСния ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… (Π’ΠΠ˜Π˜Π“Π Π–) Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 25 ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΉ с использованиСм ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π±ΠΎΡ€Π°. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ этой ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ β€” ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ выращивания Π² Ρ€Π°Π½Π½ΠΈΠΉ ΠΏΠΎΡΡ‚Π½Π°Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΈ Π±Π΅Π»Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚ ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡƒΡ…Π°. Π’ 2002-2012 Π³ΠΎΠ΄Π°Ρ… Π΅Π΅ Ρ€Π°Π·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΎΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ панмиксии, ΠΈ ΠΊ настоящСму Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π° основС ΡΠΎΡ…Ρ€Π°Π½ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ поголовья сформирована новая популяция русских Π±Π΅Π»Ρ‹Ρ… ΠΊΡƒΡ€. НашСй Ρ†Π΅Π»ΡŒΡŽ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ возмоТности ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ SNP-сканирования (single nucleotide polymorphisms) для изучСния гСнСтичСских особСнностСй структуры популяции малочислСнных ΠΏΠΎΡ€ΠΎΠ΄ ΠΊΡƒΡ€ отСчСствСнного происхоТдСния ΠΈ динамичСскиС измСнСния молСкулярной Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ сравнСния соврСмСнной популяции русской Π±Π΅Π»ΠΎΠΉ ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ с ΠΏΡ€Π΅Π΄ΠΊΠΎΠ²ΠΎΠΉ популяциСй 2001 Π³ΠΎΠ΄Π°. Π‘Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΊΡƒΡ€: популяция 2001 Π³ΠΎΠ΄Π° (6 Π³ΠΎΠ»., нСродствСнныС особи ΠΈΠ· Π΄Π²ΡƒΡ… Π»ΠΈΠ½ΠΈΠΉ) ΠΈ соврСмСнная популяция (156 Π³ΠΎΠ».). SNP-Π°Π½Π°Π»ΠΈΠ· Π²ΠΊΠ»ΡŽΡ‡Π°Π» скрининг 162 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π”ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ‡ΠΈΠΏΠ° Illumina Chicken 60K SNP iSelect BeadChip (Β«IlluminaΒ», БША). ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ качСства гСнотипирования, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ гСнСтичСской структуры популяции ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΡˆΠΊΠ°Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ (multidimensional scaling, MDS), расчСт ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ нСравновСсного сцСплСния (linkage disequilibrium, LD) ΠΈ частоты встрСчаСмости Π°Π»Π»Π΅Π΅ΠΉ ΠΏΠΎ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ PLINK 1.9. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ разграничСния кластСров Π½Π° основС SNP-Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ² осущСствляли с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ADMIXTURE. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ MDS-Π°Π½Π°Π»ΠΈΠ·Π° соврСмСнная популяция Π±Ρ‹Π»Π° условно Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Π° Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ MDS-Π³Ρ€ΡƒΠΏΠΏΡ‹, Ρ‡Ρ‚ΠΎ Π² сравнСнии с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ родословной Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ происхоТдСниС ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… особСй. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΠΈ ΠΏΡ€Π΅Π΄ΠΊΠΎΠ²ΠΎΠΉ популяции Π±Ρ‹Π»ΠΈ гСнСтичСски сходны с Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ MDS3. Π‘ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ F-статистики ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ диспСрсионного Π°Π½Π°Π»ΠΈΠ·Π° выявлСно достовСрноС влияниС Π³Ρ€ΡƒΠΏΠΏΡ‹, хромосомы, хромосомы Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΈ дистанции ΠΌΠ΅ΠΆΠ΄Ρƒ SNP-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ Π½Π° значСния LD (r2). Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ 2001 Π³ΠΎΠ΄Π° ΠΏΠΎ всСм хромосомам наблюдались ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ r2 ΠΈ высокая частота встрСчаСмости LD, Ρ€Π°Π²Π½ΠΎΠ³ΠΎ 1, ΠΏΡ€ΠΈ расстоянии ΠΌΠ΅ΠΆΠ΄Ρƒ SNP-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ 500-1000 Кб. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠΎΡ€Ρ„Π½Ρ‹Ρ… Π°Π»Π»Π΅Π»Π΅ΠΉ Π² этой Π³Ρ€ΡƒΠΏΠΏΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»ΠΎ самым высоким. На основании SNP-Π°Π½Π°Π»ΠΈΠ·Π° сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ соврСмСнная популяция русских Π±Π΅Π»Ρ‹Ρ… ΠΊΡƒΡ€ характСризуСтся распадом Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… LD-Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² ΠΏΡ€Π΅Π΄ΠΊΠΎΠ²ΠΎΠΉ популяции. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ кластСров Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ ADMIXTURE выявило различия ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ соврСмСнной популяции, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ MDS-Π°Π½Π°Π»ΠΈΠ·Π°. Π“Ρ€ΡƒΠΏΠΏΡ‹, сформированныС ΠΈΠ· особСй, входящих Π² MDS1 ΠΈ MDS2, ΠΈΠΌΠ΅Π»ΠΈ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΡƒΡŽ структуру ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΏΡ€ΠΈ K = 4 ΠΈ K = 5. Π“Ρ€ΡƒΠΏΠΏΠ° MDS4 ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Π»Π° гСнСтичСски Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΉ кластСр, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΡΡ ΠΎΡ‚ Π³Ρ€ΡƒΠΏΠΏ MDS1 ΠΈ MDS2 ΠΏΡ€ΠΈ значСниях K ΠΎΡ‚ 2 Π΄ΠΎ 5. Π“Ρ€ΡƒΠΏΠΏΠ° MDS3 Π±Ρ‹Π»Π° филогСнСтичСски Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ популяции 2001 Π³ΠΎΠ΄Π° (ΠΏΡ€ΠΈ K ΠΎΡ‚ 2 Π΄ΠΎ 5). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π°Π½Π°Π»ΠΈΠ· соврСмСнной Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π½ΠΎΠΉ популяции русских Π±Π΅Π»Ρ‹Ρ… ΠΊΡƒΡ€ ΠΏΠΎΠΊΠ°Π·Π°Π» Π΅Π΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΈ сходство Π³Ρ€ΡƒΠΏΠΏΡ‹ MDS3 с ΠΏΡ€Π΅Π΄ΠΊΠΎΠ²ΠΎΠΉ популяциСй 2001 Π³ΠΎΠ΄Π°, которая, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π»Π°ΡΡŒ большим числом ΠΌΠΎΠ½ΠΎΠΌΠΎΡ€Ρ„Π½Ρ‹Ρ… Π°Π»Π»Π΅Π»Π΅ΠΉ ΠΈ высокой частотой встрСчаСмости Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… LD-Ρ€Π°ΠΉΠΎΠ½ΠΎΠ². SNP-сканированиС ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ гСнСтичСскоС сходство особСй ΠΈ ΠΏΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ структуру русской Π±Π΅Π»ΠΎΠΉ ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ ΠΊΡƒΡ€. ПониманиС гСнСтичСской структуры Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€ΠΈ панмиктичСском Ρ€Π°Π·Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΈ отслСТивании историчСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² молСкулярной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π³Π΅Π½ΠΎΠΌΠ° Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π½ΠΎΠΉ популяции с ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ поголовьСм
    corecore