16 research outputs found

    Cryptic Diversity in Paramecium multimicronucleatum Revealed with a Polyphasic Approach

    Get PDF
    Paramecium (Ciliophora) systematics is well studied, and about twenty morphological species have been described. The morphological species may include several genetic species. How-ever, molecular phylogenetic analyses revealed that the species diversity within Paramecium could be even higher and has raised a problem of cryptic species whose statuses remain uncertain. In the present study, we provide the morphological and molecular characterization of two novel Paramecium species. While Paramecium lynni n. sp., although morphologically similar to P. multimicronucleatum, is phylogenetically well separated from all other Paramecium species, Paramecium fokini n. sp. appears to be a cryptic sister species to P. multimicronucleatum. The latter two species can be distinguished only by molecular methods. The number and structure of micronuclei, traditionally utilized to discriminate species in Paramecium, vary not only between but also within each of the three studied species and, thus, cannot be considered a reliable feature for species identification. The geographic distribution of the P. multimicronucleatum and P. fokini n. sp. strains do not show defined patterns, still leaving space for a role of the geographic factor in initial speciation in Paramecium. Future findings of new Paramecium species can be predicted from the molecular data, while morphological characteristics appear to be unstable and overlapping at least in some species

    Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-d-aspartate receptor activation

    Get PDF
    Acetylcholinesterase (AChE) is an enzyme that hydrolyses the neurotransmitter acetylcholine, thereby limiting spillover and duration of action. This study demonstrates the existence of an endogenous mechanism for the regulation of synaptic AChE activity. At the rat extensor digitorum longus neuromuscular junction, activation of N-methyl-d-aspartate (NMDA) receptors by combined application of glutamate and glycine led to enhancement of nitric oxide (NO) production, resulting in partial AChE inhibition. Partial AChE inhibition was measured using increases in miniature endplate current amplitude. AChE inhibition by paraoxon, inactivation of NO synthase by Nω-nitro-l-arginine methyl ester, and NMDA receptor blockade by dl-2-amino-5-phosphopentanoic acid prevented the increase in miniature endplate current amplitude caused by amino acids. High-frequency (10 Hz) motor nerve stimulation in a glycine-containing bathing solution also resulted in an increase in the amplitude of miniature endplate currents recorded during the interstimulus intervals. Pretreatment with an NO synthase inhibitor and NMDA receptor blockade fully eliminated this effect. This suggests that endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor/NO synthase-mediated pathway that modulates synaptic AChE activity. Therefore, in addition to well-established modes of synaptic plasticity (e.g. changes in the effectiveness of neurotransmitter release and/or the sensitivity of the postsynaptic membrane), another mechanism exists based on the prompt regulation of AChE activity. NO molecules depress AChE activity in the neuromuscular junction thereby enhancing endplate current amplitude. Endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor-/NO synthase-mediated pathway that modulates synaptic AChE activity. In addition to well-established modes of synaptic plasticity another mechanism exists based on the prompt regulation of AChE activity. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd

    Different sensitivities of rat skeletal muscles and brain to novel anti-cholinesterase agents, alkylammonium derivatives of 6-methyluracil (ADEMS)

    Get PDF
    BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools. © 2011 The British Pharmacological Society

    Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase

    Get PDF
    Terminal Schwann cells (TSCs) are key components of the mammalian neuromuscular junction (NMJ). How the TSCs sense the synaptic activity in physiological conditions remains unclear. We have taken advantage of the distinct localization of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at the NMJ to bring out the function of different ACh receptors (AChRs). AChE is clustered by the collagen Q in the synaptic cleft and prevents the repetitive activation of muscle nicotinic AChRs. We found that BChE is anchored at the TSC by a proline-rich membrane anchor, the small transmembrane protein anchor of brain AChE. When BChE was specifically inhibited, ACh release was significant depressed through the activation of α7 nAChRs localized on the TSC and activated by the spillover of ACh. When both AChE and BChE were inhibited, the spillover increased and induced a dramatic reduction of ACh release that compromised the muscle twitch triggered by the nerve stimulation. α7 nAChRs at the TSC may act as a sensor for spillover of ACh adjusted by BChE and may represent an extrasynaptic sensor for homeostasis at the NMJ. In myasthenic rats, selective inhibition of AChE is more effective in rescuing muscle function than the simultaneous inhibition of AChE and BChE because the concomitant inhibition of BChE counteracts the positive action of AChE inhibition. These results show that inhibition of BChE should be avoided during the treatment of myasthenia and the pharmacological reversal of residual curarization after anesthesia. © 2014 the authors

    Macrocyclic derivatives of 6-methyluracil as ligands of the peripheral anionic site of acetylcholinesterase

    Get PDF
    © the Partner Organisations 2014. Novel pyrimidinophanes possessing two o-nitrobenzylethyldialkylammonium heads bridging with different spacers were prepared. Pyrimidinophanes 2a, 2b and 3 are reversible inhibitors of cholinesterases. They show a very good selectivity for human acetylcholinesterase (AChE), with an inhibitory power 100-200 times higher than for human butyrylcholinesterase (BChE). Docking simulations indicate specific binding of pyrimidinophanes 2a and 4 onto the peripheral anionic site of AChE. Other compounds bind to the active center of AChE as well as to the peripheral anionic site. These compounds are dual binding site inhibitors. Pyrimidinophane 2b and its acyclic counterpart 1 were tested in the animal model of myasthenia gravis and may be considered as valuable candidates for the treatment of pathological muscle weakness syndromes. This journal i

    Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-d-aspartate receptor activation

    No full text
    Acetylcholinesterase (AChE) is an enzyme that hydrolyses the neurotransmitter acetylcholine, thereby limiting spillover and duration of action. This study demonstrates the existence of an endogenous mechanism for the regulation of synaptic AChE activity. At the rat extensor digitorum longus neuromuscular junction, activation of N-methyl-d-aspartate (NMDA) receptors by combined application of glutamate and glycine led to enhancement of nitric oxide (NO) production, resulting in partial AChE inhibition. Partial AChE inhibition was measured using increases in miniature endplate current amplitude. AChE inhibition by paraoxon, inactivation of NO synthase by Nω-nitro-l-arginine methyl ester, and NMDA receptor blockade by dl-2-amino-5-phosphopentanoic acid prevented the increase in miniature endplate current amplitude caused by amino acids. High-frequency (10 Hz) motor nerve stimulation in a glycine-containing bathing solution also resulted in an increase in the amplitude of miniature endplate currents recorded during the interstimulus intervals. Pretreatment with an NO synthase inhibitor and NMDA receptor blockade fully eliminated this effect. This suggests that endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor/NO synthase-mediated pathway that modulates synaptic AChE activity. Therefore, in addition to well-established modes of synaptic plasticity (e.g. changes in the effectiveness of neurotransmitter release and/or the sensitivity of the postsynaptic membrane), another mechanism exists based on the prompt regulation of AChE activity. NO molecules depress AChE activity in the neuromuscular junction thereby enhancing endplate current amplitude. Endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor-/NO synthase-mediated pathway that modulates synaptic AChE activity. In addition to well-established modes of synaptic plasticity another mechanism exists based on the prompt regulation of AChE activity. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd

    Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-d-aspartate receptor activation

    No full text
    Acetylcholinesterase (AChE) is an enzyme that hydrolyses the neurotransmitter acetylcholine, thereby limiting spillover and duration of action. This study demonstrates the existence of an endogenous mechanism for the regulation of synaptic AChE activity. At the rat extensor digitorum longus neuromuscular junction, activation of N-methyl-d-aspartate (NMDA) receptors by combined application of glutamate and glycine led to enhancement of nitric oxide (NO) production, resulting in partial AChE inhibition. Partial AChE inhibition was measured using increases in miniature endplate current amplitude. AChE inhibition by paraoxon, inactivation of NO synthase by Nω-nitro-l-arginine methyl ester, and NMDA receptor blockade by dl-2-amino-5-phosphopentanoic acid prevented the increase in miniature endplate current amplitude caused by amino acids. High-frequency (10 Hz) motor nerve stimulation in a glycine-containing bathing solution also resulted in an increase in the amplitude of miniature endplate currents recorded during the interstimulus intervals. Pretreatment with an NO synthase inhibitor and NMDA receptor blockade fully eliminated this effect. This suggests that endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor/NO synthase-mediated pathway that modulates synaptic AChE activity. Therefore, in addition to well-established modes of synaptic plasticity (e.g. changes in the effectiveness of neurotransmitter release and/or the sensitivity of the postsynaptic membrane), another mechanism exists based on the prompt regulation of AChE activity. NO molecules depress AChE activity in the neuromuscular junction thereby enhancing endplate current amplitude. Endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor-/NO synthase-mediated pathway that modulates synaptic AChE activity. In addition to well-established modes of synaptic plasticity another mechanism exists based on the prompt regulation of AChE activity. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd

    Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-d-aspartate receptor activation

    No full text
    Acetylcholinesterase (AChE) is an enzyme that hydrolyses the neurotransmitter acetylcholine, thereby limiting spillover and duration of action. This study demonstrates the existence of an endogenous mechanism for the regulation of synaptic AChE activity. At the rat extensor digitorum longus neuromuscular junction, activation of N-methyl-d-aspartate (NMDA) receptors by combined application of glutamate and glycine led to enhancement of nitric oxide (NO) production, resulting in partial AChE inhibition. Partial AChE inhibition was measured using increases in miniature endplate current amplitude. AChE inhibition by paraoxon, inactivation of NO synthase by Nω-nitro-l-arginine methyl ester, and NMDA receptor blockade by dl-2-amino-5-phosphopentanoic acid prevented the increase in miniature endplate current amplitude caused by amino acids. High-frequency (10 Hz) motor nerve stimulation in a glycine-containing bathing solution also resulted in an increase in the amplitude of miniature endplate currents recorded during the interstimulus intervals. Pretreatment with an NO synthase inhibitor and NMDA receptor blockade fully eliminated this effect. This suggests that endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor/NO synthase-mediated pathway that modulates synaptic AChE activity. Therefore, in addition to well-established modes of synaptic plasticity (e.g. changes in the effectiveness of neurotransmitter release and/or the sensitivity of the postsynaptic membrane), another mechanism exists based on the prompt regulation of AChE activity. NO molecules depress AChE activity in the neuromuscular junction thereby enhancing endplate current amplitude. Endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor-/NO synthase-mediated pathway that modulates synaptic AChE activity. In addition to well-established modes of synaptic plasticity another mechanism exists based on the prompt regulation of AChE activity. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd

    Different sensitivities of rat skeletal muscles and brain to novel anti-cholinesterase agents, alkylammonium derivatives of 6-methyluracil (ADEMS)

    No full text
    BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools. © 2011 The British Pharmacological Society

    Different sensitivities of rat skeletal muscles and brain to novel anti-cholinesterase agents, alkylammonium derivatives of 6-methyluracil (ADEMS)

    Get PDF
    BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools. © 2011 The British Pharmacological Society
    corecore