2 research outputs found

    Polyhedral Rearrangements in the Complexes of Rhodium and Iridium with Isomeric Carborane Anions [7,8-Me<sub>2</sub>‑X-SMe<sub>2</sub>‑7,8-<i>nido</i>-C<sub>2</sub>B<sub>9</sub>H<sub>8</sub>]<sup>−</sup> (X = 9 and 10)

    No full text
    Polyhedral rearrangement of iridacarborane 1,2-Me<sub>2</sub>-3,3-(cod)-4-SMe<sub>2</sub>-3,1,2<i>-closo</i>-IrC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>1</b>) proceeds in a solution at RT and affords a product of 1,2 → 1,7 isomerization 1,8-Me<sub>2</sub>-2,2-(cod)-7-SMe<sub>2</sub>-2,1,8-<i>closo</i>-IrC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>2</b>). Rhodium derivative 1,2-Me<sub>2</sub>-3,3-(cod)-4-SMe<sub>2</sub>-3,1,2<i>-closo</i>-RhC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>3</b>) is significantly more stable toward heating than iridium complex <b>1</b> and isomerizes at 110 °C by 1,2 → 1,2 and 1,2 → 1,7 reaction schemes with 1,2 → 1,2 being the predominant route forming 1,2-Me<sub>2</sub>-4,4-(cod)-8-SMe<sub>2</sub>-4,1,2-<i>closo-</i>RhC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>4</b>) and 1,8-Me<sub>2</sub>-2,2-(cod)-7-SMe<sub>2</sub>-2,1,8-<i>closo</i>-RhC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>5</b>). Complexes <b>4</b> and <b>5</b> were characterized by <sup>11</sup>B­{<sup>1</sup>H}–<sup>11</sup>B­{<sup>1</sup>H} COSY NMR spectrometry. A mechanism of 1,2 → 1,2 isomerization of <b>3</b> to <b>4</b> was proposed on the basis of DFT calculations. Reaction of the thallium salt Tl­[7,8-Me<sub>2</sub>-9-SMe<sub>2</sub>-7,8-<i>nido</i>-C<sub>2</sub>B<sub>9</sub>H<sub>8</sub>] (CarbTl) with [Cp*RuCl]<sub>4</sub> in THF furnishes new ruthenacarborane 1,2-Me<sub>2</sub>-3-(Cp*)-4-SMe<sub>2</sub>-3,1,2<i>-closo</i>-RuC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>6</b>). Heating of <b>6</b> at 80 and 144 °C leads to the partial and complete decomposition, respectively. Interaction of CarbTl with [Cp*IrCl<sub>2</sub>]<sub>2</sub> in the presence of TlPF<sub>6</sub> provides two new Ir­(III) complexes [1,2-Me<sub>2</sub>-3-(Cp*)-4-SMe<sub>2</sub>-3,1,2<i>-closo</i>-IrC<sub>2</sub>B<sub>9</sub>H<sub>8</sub>]­PF<sub>6</sub> (<b>7</b>PF<sub>6</sub>) and 1,2-Me<sub>2</sub>-3-(Cp*)-4-SMe-3,1,2<i>-closo</i>-IrC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>8</b>) both stable upon heating in boiling tetrachloroethane (146 °C). A new 10-substituted charge-compensated carborane [7,8-Me<sub>2</sub>-10-SMe<sub>2</sub>-7,8-<i>nido</i>-C<sub>2</sub>B<sub>9</sub>H<sub>9</sub>] (<b>9</b>) was synthesized via an interaction of dicarbollide dianion [7,8-Me<sub>2</sub>-7,8-<i>nido</i>-C<sub>2</sub>B<sub>9</sub>H<sub>9</sub>]<sup>2–</sup> with dimethyl sulfide and acetaldehyde in acidic media. Thallium salt of <b>9</b> Tl­[7,8-Me<sub>2</sub>-10-SMe<sub>2</sub>-7,8-<i>nido</i>-C<sub>2</sub>B<sub>9</sub>H<sub>8</sub>] (<b>10</b>) reacts with [(cod)­IrCl]<sub>2</sub> furnishing positional isomer of <b>1</b> with a symmetrical emplacement of SMe<sub>2</sub> substituent complex 1,2-Me<sub>2</sub>-3,3-(cod)-8-SMe<sub>2</sub>-3,1,2-<i>closo</i>-IrC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>11</b>). Iridacarborane <b>11</b> requires elevated temperatures to undergo cage isomerization and converts upon heating at 110 °C to two new compounds 1,8-Me<sub>2</sub>-2,2-(cod)-11-SMe<sub>2</sub>-2,1,8-<i>closo</i>-IrC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>12</b>) and 1,2-Me<sub>2</sub>-4,4-(cod)-9-SMe<sub>2</sub>-4,1,2-<i>closo-</i>IrC<sub>2</sub>B<sub>9</sub>H<sub>8</sub> (<b>13</b>) as a result of 1,2 → 1,7 and 1,2 → 1,2 rearrangements respectively with <b>13</b> being the minor product. The structures of <b>2</b>, <b>6</b>, <b>7</b>PF<sub>6</sub>, <b>8</b>, <b>10</b>, <b>12</b>, and <b>13</b> were determined by single-crystal X-ray diffraction

    Cyclobutadiene Metal Complexes: A New Class of Highly Selective Catalysts. An Application to Direct Reductive Amination

    No full text
    A catalyst of a new type, cyclobutadiene complex [(C<sub>4</sub>Et<sub>4</sub>)­Rh­(<i>p</i>-xylene)]­PF<sub>6</sub>, was found to promote selective reductive amination in the presence of carbon monoxide under mild conditions (1–3 bar, 90 °C). The reaction demonstrated perfect compatibility with a wide range of functional groups prone to reduction by conventional reducing agents. The developed system represents the first systematic investigation of cyclobutadiene metal complexes as catalysts
    corecore