18 research outputs found

    Power System Parameters Forecasting Using Hilbert-Huang Transform and Machine Learning

    Get PDF
    A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. Apart from introduction and references the paper is organized as follows. The section 2 presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learning-based algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting

    Probabilistic assessment of power system mode with a varying degree of wind sources integration

    Full text link
    At present among renewable sources the wind and solar plants have the most significant portion of power generation. Randomly changing and intermittent nature of this power leads to the stochasticity of the power grid mode, estimation of parameters of which requires application of probabilistic modeling. In the paper it is proposed an advanced algorithm of probabilistic load flow based on the development of two-point estimation method, the efficiency of which is confirmed on the basis of computational experiments and comparative analysis of the Monte Carlo simulation results. Calculations and analysis of the modeling results were carried out on standard 14-nodal scheme of IEEE and real electrical network of “Azerenerji” Grid

    Improving the principles of short-term electric load forecasting of the Irkutsk region

    No full text
    Forecasting of electric load (EL) is an important task for both electric power entities and large consumers of electricity [1]. Large consumers are faced with the need to compose applications for the planned volume of EL, and the deviation of subsequent real consumption from previously announced leads to the appearance of penalties from the wholesale market. In turn, electricity producers are interested in forecasting the demand for electricity for prompt response to its fluctuations and for the purpose of optimal infrastructure development. The most difficult and urgent task is the hourly forecasting of EL, which is extremely important for the successful solution of problems of optimization of generating capacities, minimization of power losses, dispatching control, security assessment of power supply, etc. Ultimately, such forecasts allow optimizing the cash costs for electricity and fuel or water consumption during generation. This paper analyzes the experience of the branch of JSC "SO UPS" Irkutsk Regional Dispatch Office of the procedure for short-term forecasting of the EL of the Irkutsk region

    Improving the principles of short-term electric load forecasting of the Irkutsk region

    No full text
    Forecasting of electric load (EL) is an important task for both electric power entities and large consumers of electricity [1]. Large consumers are faced with the need to compose applications for the planned volume of EL, and the deviation of subsequent real consumption from previously announced leads to the appearance of penalties from the wholesale market. In turn, electricity producers are interested in forecasting the demand for electricity for prompt response to its fluctuations and for the purpose of optimal infrastructure development. The most difficult and urgent task is the hourly forecasting of EL, which is extremely important for the successful solution of problems of optimization of generating capacities, minimization of power losses, dispatching control, security assessment of power supply, etc. Ultimately, such forecasts allow optimizing the cash costs for electricity and fuel or water consumption during generation. This paper analyzes the experience of the branch of JSC "SO UPS" Irkutsk Regional Dispatch Office of the procedure for short-term forecasting of the EL of the Irkutsk region

    Stability of Power Grids: State-of-the-art and Future Trends

    No full text
    The state of the art of transient stability and steady-state (small signal) stability in power grids are reviewed. Transient stability concepts are illustrated with simple examples; in particular, we consider two machine learning-based methods for computing region of attraction: ROA produced by Neural Network Lyapunov Function; estimation of the ROA of IEEE 39-bus system using Gaussian process and Converse Lyapunov function. We discuss steady state stability in power systems, and using Prony’s modal analysis for evaluating small signal stability for the 7 Bus Test system and real French power system

    Development of Digital Twin for Load Center on the Example of Distribution Network of an Urban District

    No full text
    The paper proposes a concept of building a digital twin based on the reinforcement learning method. This concept allows implementing an accurate digital model of an electrical network with bidirectional automatic data exchange, used for modeling, optimization, and control. The core of such a model is an agent (potential digital twin). The agent, while constantly interacting with a physical object (electrical grid), searches for an optimal strategy for active network management, which involves short-term strategies capable of controlling the power supplied by generators and/ or consumed by the load to avoid overload or voltage problems. Such an agent can verify its training with the initial default policy, which can be considered as a teacher’s advice. The effectiveness of this approach is demonstrated on a test 77-node scheme and a real 17-node network diagram of the Akademgorodok microdistrict (Irkutsk) according to the data from smart electricity meters

    Siting and sizing of wind farms taking into account stochastic nature of generation

    No full text
    The article deals with the problem of the negative impact of wind farms stochastic generation on power grid. One of the ways to reduce the stochasticity of the wind farms generation is their geographically distributed siting. A technique for sizing and distributed siting of wind farms from the standpoint of the influence on the variability of the total generated power is proposed. Modeling of wind power generation with hourly detailing is carried out using the developed Wind-MCA software based on data from archives of long-term observations of ground-based weather stations. The optimal distribution of wind turbines in potential locations is based on a genetic algorithm. The objective function is the coefficient of variation of the power generated by all wind farms in the sites under consideration, depending on the number of wind turbines in their composition. The genetic algorithm is implemented using the built-in MATLAB function. The proposed technique is applied to assess the capacity options and sites for wind farms in the Zabaykalsky Krai. The solution providing the minimum value of the coefficient of variation of the wind farms generated power and high value of the wind farms capacity utilization factor has been obtained
    corecore