13 research outputs found

    Arc Magmas from Slab to Eruption: The Case of Kliuchevskoy Volcano

    Get PDF
    Arc magmas are generated by a number of mantle and crustal processes. Our multidisciplinary, long-term research is aimed at deciphering these processes for a single arc volcano, Kliuchevskoy volcano in Kamchatka. Some key results of the study follow: 1) Modeling of trace element and H2O contents in melt inclusions suggests that the primary magmas originate via hydrous flux-melting of the mantle wedge at temperatures close to the dry peridotite solidus. The role of decompression melting is minor or absent at Kliuchevskoy and other arc volcanoes built on relatively thick crust. 2) Geochemistry of high-Mg olivine suggests that primary Kliuchevskoy magmas have substantial contribution from olivine-free pyroxenite (up to 30 %), which could be formed by reaction of slab melts (or supercritical fluids) with mantle wedge peridotite. 3) Parental Kliuchevskoy melts start to crystallize as deep as the Moho boundary, and the erupted magmas reflect multistage and complex processes of crystallization, magma mixing and crustal assimilation. None of the Kliuchevskoy rocks analyzed thus far represent true primary melt compositions. 4) The Kliuchevskoy Holocene eruptive history is not steady-state in terms of eruption rate and geochemistry. There are two millenial cycles with major and trace element and OSr- Nd-Pb and U-series isotope compositions of the magmas changing gradually from more to less affected by crustal (?) assimilation. The onset of the cycles correlates with periods of enhanced volcanic activity in Kamchatka, suggesting that the extent of magma-crust interaction is inversely related to magma production rate and thus magma flux from the mantle

    Study of semi-polar gallium nitride grown on m-sapphire by chloride vapor-phase epitaxy

    Get PDF
    In this study, we analyzed the result of the influence of the non-polar plane of a sapphire substrate on the structural, morphological, and optical properties and Raman scattering of the grown epitaxial GaN film. It was found that selected technological conditions for the performed chloride-hydride epitaxy let us obtain the samples of structurally qualitative semi-polar wurtzite gallium nitride with (11¯22) orientation on m-sapphire. Using a set of structural and spectral methods of analysis the structural, morphological, and optical properties of the films were studied and the value of residual bi-axial stresses was determined. A complex of the obtained results means a high structural and optical quality of the epitaxial gallium nitride film. Optimization of the applied technological technique in the future can be a promising approach for the growth of the qualitative GaN structures on m-sapphire substrates

    Planar Bragg Reflectors for Frequency-Tunable Sub-Terahertz Gyrotrons

    No full text
    A novel concept of a frequency-tuned sub-terahertz gyrotron based on a combination of an irregular low-frequency resonator and an external reflector has been proposed recently. A simulation was carried out for a fundamental-cyclotron-harmonic gyrotron that demonstrates the possibility of achieving high (10–30%) efficiencies in a wide (~10%) frequency range. A possible solution to the problem of narrow-band frequency-tunable external reflectors in the form of so-called modified planar Bragg structures is discussed. The manufacturing of such structures on the basis of a novel additive technology based on photopolymer 3D printing, as well as the results of “cold” experiments of the manufactured samples, are described in the paper

    Sosnowskyi Hogweed-Based Hard Carbons for Sodium-Ion Batteries

    No full text
    Sodium-ion battery technology rapidly develops in the post-lithium-ion landscape. Among the variety of studied anode materials, hard carbons appear to be the realistic candidates because of their electrochemical performance and relative ease of production. This class of materials can be obtained from a variety of precursors, and the most ecologically important and interesting route is the synthesis from biomass. In the present work, for the first time, hard carbons were obtained from Heracleum sosnowskyi, a highly invasive plant, which is dangerous for humans and can cause skin burns but produces a large amount of green biomass in a short time. We proposed a simple synthesis method that includes the pretreatment stage and further carbonization at 1300 °C. The effect of the pretreatment of giant hogweed on the hard carbon electrochemical properties was studied. Obtained materials demonstrate >220 mAh g−1 of the discharge capacity, high values of the initial Coulombic efficiency reaching 87% and capacity retention of 95% after 100 charge-discharge cycles in sodium half-cells. Key parameters of the materials were examined by means of different analytical, spectroscopic and microscopic techniques. The possibility of using the giant hogweed-based hard carbons in real batteries is demonstrated with full sodium-ion cells with NASICON-type Na3V2(PO4)3 cathode material

    Sosnowskyi Hogweed-Based Hard Carbons for Sodium-Ion Batteries

    No full text
    Sodium-ion battery technology rapidly develops in the post-lithium-ion landscape. Among the variety of studied anode materials, hard carbons appear to be the realistic candidates because of their electrochemical performance and relative ease of production. This class of materials can be obtained from a variety of precursors, and the most ecologically important and interesting route is the synthesis from biomass. In the present work, for the first time, hard carbons were obtained from Heracleum sosnowskyi, a highly invasive plant, which is dangerous for humans and can cause skin burns but produces a large amount of green biomass in a short time. We proposed a simple synthesis method that includes the pretreatment stage and further carbonization at 1300 °C. The effect of the pretreatment of giant hogweed on the hard carbon electrochemical properties was studied. Obtained materials demonstrate >220 mAh g−1 of the discharge capacity, high values of the initial Coulombic efficiency reaching 87% and capacity retention of 95% after 100 charge-discharge cycles in sodium half-cells. Key parameters of the materials were examined by means of different analytical, spectroscopic and microscopic techniques. The possibility of using the giant hogweed-based hard carbons in real batteries is demonstrated with full sodium-ion cells with NASICON-type Na3V2(PO4)3 cathode material

    Humic Polyelectrolytes Facilitate Rapid Microwave Synthesis of Silver Nanoparticles Suitable for Wound-Healing Applications

    No full text
    This article describes the one-pot microwave synthesis of silver nanoparticles (AgNPs) assisted with natural polyelectrolytes—humic substances (HS). The humic polyelectrolytes served both as chemical reductants for silver ions and as end-capping agents for AgNPs. Three commercially available sodium humates extracted from lignites and leonardite and one sodium fulvate isolated from natural brown water seeped through peat deposits were used in this study. The dynamics of the growth rate of AgNPs was characterised by UV–VIS spectroscopy by measuring the intensity of surface plasmon resonance at 420 nm. Transmission electron microscopy was used to characterise the size and morphology of AgNPs. Dynamic light scattering was used to determine size distributions of the synthesised AgNPs in the solutions. It was established that both conventional and microwave syntheses assisted with the coal humates produced small-size AgNPs in the range from 4 to 14 nm, with the maximum share of particles with sizes of (6 ± 2) nm by TEM estimates. The peat fulvate yielded much larger NPs with sizes from 10 to 50 nm by TEM estimates. DLS measurements revealed multimodal distributions of AgNPs stabilised with HS, which included both single NPs with the sizes from 5 to 15 nm, as well as their dominating aggregates with sizes from 20 to 200 nm and a smaller portion of extra-large aggregates up to 1000 nm. The given aggregates were loosely bound by humic polyelectrolyte, which prevented the coalescence of AgNPs into larger particles, as can be seen in the TEM images. The significant acceleration in the reaction time—a factor of 60 to 70—was achieved with the use of MW irradiation: from 240 min down to 210–240 s. The coal humate stabilised AgNPs showed antimicrobial properties in relation to S. aureus. A conclusion was made regarding the substantial advantages of microwave synthesis in the context of time and scaling up for the large-scale production of AgNP-HS preparations with antimicrobial properties suitable for external wound-healing applications

    Changes in the Etiology of Acute Respiratory Infections among Children in Novosibirsk, Russia, between 2019 and 2022: The Impact of the SARS-CoV-2 Virus

    No full text
    A wide range of human respiratory viruses are known that may cause acute respiratory infections (ARIs), such as influenza A and B viruses (HIFV), respiratory syncytial virus (HRSV), coronavirus (HCoV), parainfluenza virus (HPIV), metapneumovirus (HMPV), rhinovirus (HRV), adenovirus (HAdV), bocavirus (HBoV), and others. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COronaVIrus Disease (COVID) that lead to pandemic in 2019 and significantly impacted on the circulation of ARIs. The aim of this study was to analyze the changes in the epidemic patterns of common respiratory viruses among children and adolescents hospitalized with ARIs in hospitals in Novosibirsk, Russia, from November 2019 to April 2022. During 2019 and 2022, nasal and throat swabs were taken from a total of 3190 hospitalized patients 0–17 years old for testing for HIFV, HRSV, HCoV, HPIV, HMPV, HRV, HAdV, HBoV, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time PCR. The SARS-CoV-2 virus dramatically influenced the etiology of acute respiratory infections among children and adolescents between 2019 and 2022. We observed dramatic changes in the prevalence of major respiratory viruses over three epidemic research seasons: HIFV, HRSV, and HPIV mainly circulated in 2019–2020; HMPV, HRV, and HCoV dominated in 2020–2021; and HRSV, SARS-CoV-2, HIFV, and HRV were the most numerous agents in 2021–2022. Interesting to note was the absence of HIFV and a significant reduction in HRSV during the 2020–2021 period, while HMPV was absent and there was a significant reduction of HCoV during the following epidemic period in 2021–2022. Viral co-infection was significantly more frequently detected in the 2020–2021 period compared with the other two epidemic seasons. Certain respiratory viruses, HCoV, HPIV, HBoV, HRV, and HAdV, were registered most often in co-infections. This cohort study has revealed that during the pre-pandemic and pandemic periods, there were dramatic fluctuations in common respiratory viruses registered among hospitalized patients 0–17 years old. The most dominant virus in each research period differed: HIFV in 2019–2020, HMPV in 2020–2021, and HRSV in 2021–2022. Virus–virus interaction was found to be possible between SARS-CoV-2 and HRV, HRSV, HAdV, HMPV, and HPIV. An increase in the incidence of COVID-19 was noted only during the third epidemic season (January to March 2022)

    Enhanced Antioxidant Activity and Reduced Cytotoxicity of Silver Nanoparticles Stabilized by Different Humic Materials

    No full text
    The current article describes the biological activity of new biomaterials combining the “green” properties of humic substances (HSs) and silver nanoparticles. The aim is to investigate the antioxidant activity (AOA) of HS matrices (macroligands) and AgNPs stabilized with humic macroligands (HS-AgNPs). The unique chemical feature of HSs makes them very promising ligands (matrices) for AgNP stabilization. HSs have previously been shown to exert many pharmacological effects mediated by their AOA. AgNPs stabilized with HS showed a pronounced ability to bind to reactive oxygen species (ROS) in the test with ABTS. Also, higher AOA was observed for HS-AgNPs as compared to the HS matrices. In vitro cytotoxicity studies have shown that the stabilization of AgNPs with the HS matrices reduces the cytotoxicity of AgNPs. As a result of in vitro experiments with the use of 2,7-dichlorodihydrofluorescein diacetate (DCFDA), it was found that all HS materials tested and the HS-AgNPs did not exhibit prooxidant effects. Moreover, more pronounced AOA was shown for HS-AgNP samples as compared to the original HS matrices. Two putative mechanisms of the pronounced AOA of the tested compositions are proposed: firstly, the pronounced ability of HSs to inactivate ROS and, secondly, the large surface area and surface-to-volume ratio of HS-AgNPs, which facilitate electron transfer and mitigate kinetic barriers to the reduction reaction. As a result, the antioxidant properties of the tested HS-AgNPs might be of particular interest for biomedical applications aimed at inhibiting the growth of bacteria and viruses and the healing of purulent wounds
    corecore