6 research outputs found

    A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans

    Get PDF
    C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman’s degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca(2+)-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, Îș-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein

    Nanomechanical Signatures in Glioma Cells Depend on CD44 Distribution in IDH1 Wild-Type but Not in IDH1R132H Mutant Early-Passage Cultures

    No full text
    Atomic force microscopy (AFM) recently burst into biomedicine, providing morphological and functional characteristics of cancer cells and their microenvironment responsible for tumor invasion and progression, although the novelty of this assay needs to coordinate the malignant profiles of patients’ specimens to diagnostically valuable criteria. Applying high-resolution semi-contact AFM mapping on an extended number of cells, we analyzed the nanomechanical properties of glioma early-passage cell cultures with a different IDH1 R132H mutation status. Each cell culture was additionally clustered on CD44+/− cells to find possible nanomechanical signatures that differentiate cell phenotypes varying in proliferative activity and the characteristic surface marker. IDH1 R132H mutant cells compared to IDH1 wild-type ones (IDH1wt) characterized by two-fold increased stiffness and 1.5-fold elasticity modulus. CD44+/IDH1wt cells were two-fold more rigid and much stiffer than CD44-/IDH1wt ones. In contrast to IDH1 wild-type cells, CD44+/IDH1 R132H and CD44-/IDH1 R132H did not exhibit nanomechanical signatures providing statistically valuable differentiation of these subpopulations. The median stiffness depends on glioma cell types and decreases according to the following manner: IDH1 R132H mt (4.7 mN/m), CD44+/IDH1wt (3.7 mN/m), CD44-/IDH1wt (2.5 mN/m). This indicates that the quantitative nanomechanical mapping would be a promising assay for the quick cell population analysis suitable for detailed diagnostics and personalized treatment of glioma forms

    Studies on the Structure and Properties of Membrane Phospholipase A1 Inclusion Bodies Formed at Low Growth Temperatures Using GFP Fusion Strategy

    No full text
    The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells

    Cyclobutadiene Arene Complexes of Rhodium and Iridium

    No full text
    Reactions of [(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>RhCl]<sub>2</sub> or [(coe)<sub>2</sub>RhCl]<sub>2</sub> (coe = cyclooctene) with AgPF<sub>6</sub> and arenes, followed by addition of 3-hexyne, give the cyclobutadiene complexes [(C<sub>4</sub>Et<sub>4</sub>)­Rh­(arene)]<sup>+</sup> in 40–65% yield (arene = <i>tert</i>-butylbenzene, <i>p</i>-xylene, mesitylene, 4-mesitylbutanoic acid). In the absence of arenes, the hexaethylbenzene complex [(C<sub>4</sub>Et<sub>4</sub>)­Rh­(C<sub>6</sub>Et<sub>6</sub>)]<sup>+</sup> is formed in 70% yield as a result of cyclotrimerization of 3-hexyne in the coordination sphere of rhodium. Similar reaction of [(coe)<sub>2</sub>IrCl]<sub>2</sub> with AgPF<sub>6</sub> and 3-hexyne leads to [(C<sub>4</sub>Et<sub>4</sub>)­Ir­(C<sub>6</sub>Et<sub>6</sub>)]<sup>+</sup>, which is apparently the first reported cyclobutadiene iridium complex. DFT calculations suggest that formation of the model cyclobutadiene complex [(C<sub>4</sub>Me<sub>4</sub>)­Rh­(C<sub>6</sub>H<sub>6</sub>)]<sup>+</sup> from bis­(alkyne) intermediate [(C<sub>2</sub>Me<sub>2</sub>)<sub>2</sub>Rh­(C<sub>6</sub>H<sub>6</sub>)]<sup>+</sup> can proceed via a metallacycle transition state with a low energy barrier of 14.5 kcal mol<sup>–1</sup>

    Advances in the Understanding of Skin Cancer: Ultraviolet Radiation, Mutations, and Antisense Oligonucleotides as Anticancer Drugs

    No full text
    Skin cancer has always been and remains the leader among all tumors in terms of occurrence. One of the main factors responsible for skin cancer, natural and artificial UV radiation, causes the mutations that transform healthy cells into cancer cells. These mutations inactivate apoptosis, an event required to avoid the malignant transformation of healthy cells. Among these deadliest of cancers, melanoma and its &#8216;younger sister&#8217;, Merkel cell carcinoma, are the most lethal. The heavy toll of skin cancers stems from their rapid progression and the fact that they metastasize easily. Added to this is the difficulty in determining reliable margins when excising tumors and the lack of effective chemotherapy. Possibly the biggest problem posed by skin cancer is reliably detecting the extent to which cancer cells have spread throughout the body. The initial tumor is visible and can be removed, whereas metastases are invisible to the naked eye and much harder to eliminate. In our opinion, antisense oligonucleotides, which can be used in the form of targeted ointments, provide real hope as a treatment that will eliminate cancer cells near the tumor focus both before and after surgery

    Physical and Biological Features of the Waters in the Outer Patagonian Shelf and the Malvinas Current

    No full text
    The aim of this study is to trace how the fine-thermohaline and kinematic structure, formed over a section along 45.8° S in the interaction zone of the outer Patagonian Shelf (PS) and Malvinas (Falkland) Current (MC) System waters, affect the spatial distribution of bio-optical characteristics, phyto/zooplankton, birds, and marine mammals. For the first time, simultaneous multidisciplinary observations at high spatial resolution (~2.5 km) were performed in this region during the cruise of the R/V “Akademic Mstislav Keldysh” in February 2022. A fine structure of alternating upwelling and downwelling zones over the PS and slope was identified, which resulted from the interaction between the MC inshore branch (MCi), bottom topography, and wind. This interaction significantly affects all the physical, and optical characteristics analyzed in the work, as well as the biota of the region. It was found that the euphotic zone is larger in the downwelling zones than in the upwelling zones, and all spatially local maxima of phytoplankton photosynthetic efficiency are observed in the zones between upwelling and downwelling. Phytoplankton along the section were represented by 43 species. A total of 30 zooplankton species/taxa were identified. Three species of marine mammals and 11 species of birds were recorded in the study site. Most of the phytoplankton species list were formed by dinoflagellates, and picoplankton Prasinoderma colonial quantitatively dominated everywhere. Two floristic and three assemblage groups were distinguished among the analyzed phytoplankton communities. High phytoplankton biodiversity was observed above the PS and low above the PS edge and in the MCi core. Copepods mostly dominated in zooplankton. Subantarctic species/taxa of zooplankton concentrated in the nearshore waters of the PS, while Antarctic species/taxa were most abundant in the zone between the MCi and the MC offshore branch (MCo). The relative abundance of birds in the PS was several times higher than in the MCo. The minimum abundance of birds was in the MCi in the zone of the strongest upwelling identified above the PS edge
    corecore