2 research outputs found

    Features of single- and multi-component gas hydrates formation

    Get PDF
    Natural hydrates are a form of the gas existence in depths and a promising source of hydrocarbon gas. Manmade hydrates in bottom-hole zones and wellbores complicate hydrocarbon production, reducing production rates. In oil and gas collection systems hydrates are deposited under certain conditions of temperature and pressure on the walls of the pipes and increase its hydraulic resistance, thereby increasing energy consumption. The presence of hydrates in streams of producing fluid increases the wear of prefabricated collectors, reducing their life. In hydrocarbon field preparation`s systems (heat exchange equipment, separators, throttle devices, ejectors) hydrate deposition degrades technological processes. Hydrate formation in machinery and equipment (compressor, expander) collection and treatment systems lead to accidents. In gas pipeline transport the hydrate deposition reduces its effectiveness. To solve problems associated with technogenic hydrates and gas production from natural hydrates, it is necessary to know the basic features of their formation. The article contains modern concepts of single- and multi-component gashydrates formation (natural and oil), which occur in natural and technical systems. Authors hope that the paper will be useful to a wide range of readers, especially students and staff of higher education institutions of oil and gas profile, as well as professionals, industrial activity of whom is connected with production, collection, preparation and transportation of natural and oil gases. Based on the systematization and analysis of more than a thousand experimental research and practical applications in this area over the period since 1780 to the present time, the authors have identified some features of the hydrate formation from single or multi-component gases

    Strata matter formation model

    Get PDF
    Using the model developed in the paper, the process of genesis in depths of the planet of all chemical elements given in the Periodic Mendeleev's system is presented. Formation of nuclei and atoms occurs according to the elementary reactions of the interaction of electrons, neutrinos and protons entering the subsoil with high-energy cosmic streams and as a result of high-temperature dissociation of water descending into the depths of the planet under the action of gravity. Matter synthesis goes on the principle of a simple chemical element to the complex. It is mathematically expressed in terms of the relative time of formation of any chemical element of the Periodic System in hydrogen. This time indirectly indicates the prevalence of a chemical element in nature. Formation of chemical elements occurs with the release of a large amount of thermal energy, which heats the magma, moving it to the sides with a lower energy level. Getting into areas with a lower energy level, atoms of chemical elements interact with each other and form various molecular compounds according to chemical reactions. Moving magma affects the crust of the planet. As a result, cracks and faults are formed in thin places of the crust. Chemical elements and molecular compounds rise to the surface under the action of high pressure and temperature. Massive chemical elements and heavy substances are deposited in deeper layers of the earth's crust or carried to the surface with magma. Light matter such as hydrocarbons reaches the surface through cracks and fractures. Oil is formed from condensed hydrocarbons; gas is formed from uncondensed ones. When they enter geological confined spaces, they form new or fill the known formations and field being developed. If there are no closed cavities in the way of hydrocarbons, then hydrocarbons appear on the surface as emissions from faults and mud volcanoes. The model reflects reverse processes such as dissociation of chemical elements into protons, electrons and electrons. During the dissociation, energy is absorbed; a local compression of the magma occurs. Expansion of magma during the formation of chemical elements and its contraction during their dissociation cause low and high frequency pulsations of the planet, during which excess energy is discharged into space. It is indicated that initially all chemicals, including water, were formed in the mantle from high-energy particles such as protons, electrons and neutrinos emitted by the sun and space. It means that our planet is the product of protons, electrons and neutrinos. The main provisions of the developed model are confirmed by results of experimental studies of similar processes and results of geological and geophysical studies in the Black and Caspian Seas, on sea and ocean shelves as well as on the Kolskaya ultradeep well. This allowed to assert that the developed model has a fairly high degree of reliability
    corecore