12 research outputs found

    Six-month effects of early or delayed provision of an ankle-foot orthosis in patients with (sub)acute stroke:A randomized controlled trial

    Get PDF
    Objective: To study the six-month clinical effects of providing ankle-foot orthoses at different moments (early or delayed) in (sub)acute stroke; this is a follow-up to a published trial. Design: Randomized controlled trial. Setting: Rehabilitation centre. Subjects: Unilateral hemiparetic stroke subjects maximal six weeks post-stroke with indication for ankle-foot orthosis use. Interventions: Subjects were randomly assigned to early (at inclusion; week 1) or delayed provision (eight weeks later; week 9). Outcome measures: Functional tests assessing balance and mobility were performed bi-weekly for 17 weeks and at week 26. Results: In all, 33 subjects were randomized. No differences at week 26 were found between both groups for any of the outcome measures. However, results suggest that early provision leads to better outcomes in the first 11–13 weeks. Berg Balance Scale (P= 0.006), Functional Ambulation Categories (P=0.033) and 6-minute walk test (P<0.001) showed significantly different patterns over time. Clinically relevant but statistically non-significant differences of 4–10 weeks in reaching independent walking with higher balance levels were found, favouring early provision. Conclusion: No six-month differences in functional outcomes of providing ankle-foot orthoses at different moments in the early rehabilitation after stroke were found. Results suggest that there is a period of 11–13 weeks in which early provision may be beneficial, possibly resulting in early independent and safe walking. However, our study was underpowered. Further research including larger numbers of subjects is warranted

    Estimating center of pressure and center of mass patterns in stroke subjects during daily life activities using force sensing shoes

    Get PDF
    The aim of this study is to evaluate center of pressure and center of mass movement patterns in stroke patients, during activities of daily living while wearing instrumented shoes containing force sensors and inertial sensors. The use of instrumented shoes enables the measurement of balance parameters during ADL tasks without being restricted to a laboratory environment. Results indicate that in more demanding tasks, the mean CoP and CoM position shifts more towards the non-affected side compared to walking in a straight line

    Six weeks Use of a Wearable Soft-robotic Glove During ADL:Preliminary Results of Ongoing Clinical Study

    Get PDF
    In this ongoing study, an assistive wearable soft-robotic glove, named Carbonhand, is tested at home for 6 weeks by subjects with decreased handgrip strength to receive a first insight in the therapeutic effect of using this assistive grip-supporting glove during ADLs. Preliminary results of the first 13 participants showed that participants appreciated use of the glove to assist them with daily life activities. Even more, grip strength without glove improved and functional performance showed increases as well. These preliminary findings hold promise for observing a clinical effect of using the soft-robotic glove as assistance in ADLs upon completion of data collection

    Optimizing Activity Recognition in Stroke Survivors for Wearable Exoskeletons

    Get PDF
    Stroke affects the mobility, hence the quality of life of people victim of this cerebrovascular disease. Part of research has been focusing on the development of exoskeletons bringing support to the user's joints to improve their gait and to help regaining independence in daily life. One example is Xosoft, a soft modular exoskeleton currently being developed in the framework of the European project of the same name. On top of its assistive properties, the soft exoskeleton will provide therapeutic feedback via the analysis of kinematic data stemming from inertial sensors mounted on the exoskeleton. Prior to these analyses however, the activities performed by the user must be known in order to have sufficient behavioral context to interpret the data. Four activity recognition chains, based on machine learning algorithm, were implemented to automatically identify the nature of the activities performed by the user. To be consistent with the application they are being used for (i.e. Wearable exoskeleton), focus was made on reducing energy consumption by configuration minimization and bringing robustness to these algorithms. In this study, movement sensor data was collected from eleven stroke survivors while performing daily-life activities. From this data, we evaluated the influence of sensor reduction and position on the performances of the four algorithms. Moreover, we evaluated their resistance to sensor failures. Results show that in all four activity recognition chains, and for each patient, reduction of sensors is possible until a certain limit beyond which the position on the body has to be carefully chosen in order to maintain the same performance results. In particular, the study shows the benefits of avoiding lower legs and foot locations as well as the sensors positioned on the affected side of the stroke patient. It also shows that robustness can be brought to the activity recognition chain when the data stemming from the different sensors are fused at the very end of the classification process

    The influence of early or delayed provision of ankle-foot orthoses on pelvis, hip and knee kinematics in patients with sub-acute stroke: A randomized controlled trial

    Get PDF
    Background: Compensatory pelvis, hip- and knee movements are reported after stroke to overcome insufficient foot-clearance. Ankle-foot orthoses (AFOs) are often used to improve foot-clearance, but the optimal timing of AFO-provision post-stroke is unknown. Early AFO-provision to prevent foot-drop might decrease the development of compensatory movements, but it is unknown whether timing of AFO-provision affects post-stroke kinematics. Research questions: 1) To compare the effect of AFO-provision at two different points in time (early versus delayed) on frontal pelvis and hip, and sagittal hip and knee kinematics in patients with sub-acute stroke. Effects were assessed after 26 weeks; 2) To study whether possible changes in kinematics or walking speed during the 26-weeks follow-up period differed between both groups. Method: An explorative randomized controlled trial was performed, including unilateral hemiparetic patients maximal six weeks post-stroke with indication for AFO-use. Subjects were randomly assigned to AFO-provision early (at inclusion) or delayed (eight weeks later). 3D gait-analysis with and without AFO was performed in randomized order. Measurements were performed in study-week 1, 9, 17 and 26. Results: Twenty-six subjects (15 early, 11 delayed) were analyzed. After 26 weeks, no differences in kinematics were found between both groups for any of the joint angles, both for the without and with AFO-condition. Changes in kinematics during the 26-weeks follow-up period did not differ between both groups for any of the joint angles during walking without AFO. Significant differences in changes in walking speed during the 26-weeks follow-up were found (p = 0.034), corresponding to the first eight weeks after AFO-provision. Significance: Results indicate that early or delayed AFO-use post-stroke does not influence pelvis, hip and knee movements after 26 weeks, despite that AFO-use properly corrected drop-foot. AFOs should be provided to improve drop-foot post-stroke, but not with the intention to influence development of compensatory patterns around pelvis and hip

    The effect of ankle-foot orthoses on fall/near fall incidence in patients with (sub-)acute stroke: A randomized controlled trial

    Get PDF
    Falls are commonly reported post-stroke. Ankle-foot orthoses (AFOs) are often provided to improve safety and walking, but the effect of their use in the reduction of falls after stroke is unknown. A randomized controlled trial (RCT) on the effects of AFO-provision after stroke was performed. Effects on clinical scales, 3D-gait kinematics and muscle-activity were previously reported. This paper aims to study the effects of AFO-provision on occurrence and circumstances of falls/near falls. The RCT included unilateral hemiparetic stroke patients. AFOs were provided either early (study week 1) or delayed (study week 9). Both groups were compared in the first eight weeks of the study and diaries were used to register falls/near falls and their circumstances. Follow-up measurements were performed in week 9–52, in which both groups were provided with AFOs. Functional Ambulation Categories and Berg Balance Scale were assessed to determine walking independence and balance, respectively. Last known scores were noted in case of an incident. Thirty-three subjects were included (16 early, 17 delayed). In week 1–8, the early group, who were provided with AFOs, fell significantly more frequently compared with the delayed group, 11 versus 4 times, respectively (Incidence Rate Ratio = 2.9, p = 0.039). Out of the falls recorded in the early group, 63.6% occurred without wearing AFOs. Most of these falls occurred during transfers (36.4%) and standing (27.3%), and notably it were the subjects who did not have independent walking ability. No differences were found for near falls in week 1–8, or for falls/near falls in week 9–52. Six severe consequences (including fractures) were reported from a fall. To conclude, the subjects provided with AFOs early after stroke reported a higher number of falls, compared to the subjects that had not yet been provided with AFOs. However, in the subjects provided with AFOs, 63.6% of the falls occurred whilst without wearing the AFO. Furthermore, the majority of these incidents took place whilst subjects had no independent walking ability. This raises an interesting question of the importance of careful instructions to patients and their relatives, and the influence of potential cognitive impairments on the ability of the subjects to take on these instructions
    corecore