1,278 research outputs found

    Triviality of the prolongation algebra of the Kuramoto-Sivashinsky equation

    Get PDF
    The authors apply the well known Wahlquist-Estabrook prolongation technique to the Kuramoto-Sivashinsky equation. The prolongation algebra turns out to be trivial in the sense that it is commutative. This supports nonintegrability of the equation

    A Generalized Duality Transformation of the Anisotropic Xy Chain in a Magnetic Field

    Full text link
    We consider the anisotropic XYXY chain in a magnetic field with special boundary conditions described by a two-parameter Hamiltonian. It is shown that the exchange of the parameters corresponds to a similarity transformation, which reduces in a special limit to the Ising duality transformation.Comment: 6 pages, LaTeX, BONN-HE-93-4

    Ramsey-type microwave spectroscopy on CO (a3Πa^3\Pi)

    Full text link
    Using a Ramsey-type setup, the lambda-doublet transition in the J=1, Ω=1J=1,\, \Omega=1 level of the a3Πa^3\Pi state of CO was measured to be 394 064 870(10) Hz. In our molecular beam apparatus, a beam of metastable CO is prepared in a single quantum level by expanding CO into vacuum and exciting the molecules using a narrow-band UV laser system. After passing two microwave zones that are separated by 50 cm, the molecules are state-selectively deflected and detected 1 meter downstream on a position sensitive detector. In order to keep the molecules in a single mJBm_J^B level, a magnetic bias field is applied. We find the field-free transition frequency by taking the average of the mJB=+1→mJB=+1m_J^B = +1 \rightarrow m_J^B = +1 and mJB=−1→mJB=−1m_J^B = -1 \rightarrow m_J^B = -1 transitions, which have an almost equal but opposite Zeeman shift. The accuracy of this proof-of-principle experiment is a factor of 100 more accurate than the previous best value obtained for this transition

    Reconstructed Rough Growing Interfaces; Ridgeline Trapping of Domain Walls

    Full text link
    We investigate whether surface reconstruction order exists in stationary growing states, at all length scales or only below a crossover length, lrecl_{\rm rec}. The later would be similar to surface roughness in growing crystal surfaces; below the equilibrium roughening temperature they evolve in a layer-by-layer mode within a crossover length scale lRl_{\rm R}, but are always rough at large length scales. We investigate this issue in the context of KPZ type dynamics and a checker board type reconstruction, using the restricted solid-on-solid model with negative mono-atomic step energies. This is a topology where surface reconstruction order is compatible with surface roughness and where a so-called reconstructed rough phase exists in equilibrium. We find that during growth, reconstruction order is absent in the thermodynamic limit, but exists below a crossover length lrec>lRl_{\rm rec}>l_{\rm R}, and that this local order fluctuates critically. Domain walls become trapped at the ridge lines of the rough surface, and thus the reconstruction order fluctuations are slaved to the KPZ dynamics

    Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals

    Full text link
    The staggered 6-vertex model describes the competition between surface roughening and reconstruction in (100) facets of CsCl type crystals. Its phase diagram does not have the expected generic structure, due to the presence of a fully-packed loop-gas line. We prove that the reconstruction and roughening transitions cannot cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong coupling scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface roughness much larger than the conventional universal value. It seems that additional fluctuations become critical simultaneously.Comment: 31 pages, 9 figure

    Anomalous Roughness in Dimer-Type Surface Growth

    Full text link
    We point out how geometric features affect the scaling properties of non-equilibrium dynamic processes, by a model for surface growth where particles can deposit and evaporate only in dimer form, but dissociate on the surface. Pinning valleys (hill tops) develop spontaneously and the surface facets for all growth (evaporation) biases. More intriguingly, the scaling properties of the rough one dimensional equilibrium surface are anomalous. Its width, W∼LαW\sim L^\alpha, diverges with system size LL, as α=1/3\alpha={1/3} instead of the conventional universal value α=1/2\alpha={1/2}. This originates from a topological non-local evenness constraint on the surface configurations.Comment: Published version in PR

    Crossover Scaling Functions in One Dimensional Dynamic Growth Models

    Full text link
    The crossover from Edwards-Wilkinson (s=0s=0) to KPZ (s>0s>0) type growth is studied for the BCSOS model. We calculate the exact numerical values for the k=0k=0 and 2π/N2\pi/N massgap for N≤18N\leq 18 using the master equation. We predict the structure of the crossover scaling function and confirm numerically that m0≃4(π/N)2[1+3u2(s)N/(2π2)]0.5m_0\simeq 4 (\pi/N)^2 [1+3u^2(s) N/(2\pi^2)]^{0.5} and m1≃2(π/N)2[1+u2(s)N/π2]0.5m_1\simeq 2 (\pi/N)^2 [1+ u^2(s) N/\pi^2]^{0.5}, with u(1)=1.03596967u(1)=1.03596967. KPZ type growth is equivalent to a phase transition in meso-scopic metallic rings where attractive interactions destroy the persistent current; and to endpoints of facet-ridges in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques

    Crossover from Isotropic to Directed Percolation

    Full text link
    Directed percolation is one of the generic universality classes for dynamic processes. We study the crossover from isotropic to directed percolation by representing the combined problem as a random cluster model, with a parameter rr controlling the spontaneous birth of new forest fires. We obtain the exact crossover exponent yDP=yT−1y_{DP}=y_T-1 at r=1r=1 using Coulomb gas methods in 2D. Isotropic percolation is stable, as is confirmed by numerical finite-size scaling results. For D≥3D \geq 3, the stability seems to change. An intuitive argument, however, suggests that directed percolation at r=0r=0 is unstable and that the scaling properties of forest fires at intermediate values of rr are in the same universality class as isotropic percolation, not only in 2D, but in all dimensions.Comment: 4 pages, REVTeX, 4 epsf-emedded postscript figure
    • …
    corecore