585 research outputs found
Does food insecurity impact subjective evaluation of well-being? Evidence from a developing country
Understanding the relationship between food insecurity and subjective evaluation of well-being is critical in designing social welfare policies, especially in developing countries. Surprisingly, literature on the topic is scarce. This study adopted Van Praag's theoretical framework and used household survey data from Ghana to investigate the monetary income which households facing severe food insecurity require to reach a given level of verbal qualification of well-being. We found that households that are food insecure require a higher monetary income to reach the same level of verbal qualification of well-being than their counterparts who are food secure. Furthermore, per capita household income levels positively correlate with monetary income requirements, indicating a weak correlation between food security and per capita household income. Households that receive support from others require a lower level of income than either those who give support or those who neither give nor receive support
Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis
SummaryObjectiveTo compare the biocompatibility and immunogenicity of two intra-articular hyaluronan formulations, Gel-200 (Gel-One®) and hylan G-F 20 (Synvisc® series).Experimental designA comparison of the biocompatibility of Gel-200 and hylan G-F 20 was made using a rat subcutaneous air pouch model and the knee joint of normal rabbits. Immunogenicity was evaluated using a homologous passive cutaneous anaphylaxis (PCA) assay in guinea pigs.ResultsIn the air pouch model in rats, characteristic fibrous belts formed in the subcutaneous tissue. Injection of hylan G-F 20 into the air pouch induced granulomatous nodules primarily composed of macrophages, multinucleated giant cells, and eosinophils accompanied with the test material in the center of the nodules in the fibrous belt. Furthermore, the thickness of the fibrous belt in the hylan G-F 20 group increased significantly compared to the saline group. Injection of Gel-200 into the air pouch induced neither granulomatous inflammation nor significant thickening of fibrous belt, while foamy macrophages containing the test material were observed. Intra-articular injection of hylan G-F 20 into the rabbit knee joints induced granulomatous inflammation, eosinophil infiltration, and significant increase in the number of cells in the synovial fluid, while these findings were absent in the Gel-200 group. In the immunogenicity assay, hylan G-F 20 induced a positive PCA reaction, but the Gel-200 did not.ConclusionGel-200 showed more favorable biocompatibility and less immunogenicity compared to hylan G-F 20. Gel-200 is expected to be a single injection hyaluronan product with less safety concerns for the treatment of knee osteoarthritis (OA) pain
Generating temperature cycle profiles of different solar photovoltaic module technologies from in-situ conditions for accurate prediction of thermomechanical degradation
The IEC61215 TC200 is a rigorous approval thermal cycling test process that assesses the reliability of solar photovoltaic modules and offers a 25-year lifetime guarantee. However, previous research has shown that installed solar photovoltaic modules experience different rates of degradation depending on the location and climate with most research focused on crystalline silicon. In this study, outdoor weathering data obtained from a rig set up in Kumasi, Ghana for the year 2014, is used to generate thermal cycles for 5 different technologies including monocrystalline, polycrystalline, and amorphous silicon, Copper Indium Gallium Selenide (CIGS) and Heterojunction-With-Intrinsic-Thin-Layer (HIT). From the results, the highest yearly average of the maximum and minimum temperatures, and ramp rates of 54.8oC, 26.1oC, and 6.05oC/h respectively are recorded in CIGS. Polycrystalline recorded the least temperatures of 45.2°C and 23.9°C while HIT recorded the least ramp rate of 4.45°C /h. A comparison between the 2014 and the IEC61215 thermal cycles show extremely wide differences which could explain the higher degradation rates and shorter life of installed solar photovoltaic modules. The procedure adopted in this research can be repeated at different locations to obtain technology-specific thermal cycling profiles to evaluate the thermomechanical damage and predict the life of different solar photovoltaic modules
Impact of Soil Compaction on Bulk Density and Root Biomass of Quercus petraea
The impact of soil compaction on bulk density and root biomass of Quercus petraea L. was assessed after 85 years of reclamation of post-lignite mining soil at Welzow-South, in Lusatia, Germany. Bulk density of core soils sampled from 20 to 25 cm, 100 to 105 cm, and 200 to 205 cm depths and oven-dried biomass of Q. petraea roots sampled from 0 to 30 cm and at successive depths of 20 cm, up to 210 cm depth at compacted and uncompacted sites were determined. Bulk density was significantly higher at 20 to 25 cm (1.74±0.09 g cm−3) and 100 to 105 cm (1.65±0.06 g cm−3) depths of the compacted site. Likewise, compaction induced significant greater root biomass within the 0 to 70 cm depth with higher bulk density; root biomass at this depth was 2-fold greater compared to the uncompacted site. Root biomass decreased with soil depth and showed significant relationship with depth at both sites. The result indicates that, after 85 years of reclamation, the impact of soil compaction persisted as evident in higher bulk density and greater root biomass
- …