622 research outputs found

    Optimum ground states for spin-32\frac{3}{2} chains

    Full text link
    We present a set of {\em optimum ground states} for a large class of spin-32\frac{3}{2} chains. Such global ground states are simultaneously ground states of the local Hamiltonian, i.e. the nearest neighbour interaction in the present case. They are constructed in the form of a matrix product. We find three types of phases, namely a {\em weak antiferromagnet}, a {\em weak ferromagnet}, and a {\em dimerized antiferromagnet}. The main physical properties of these phases are calculated exactly by using a transfer matrix technique, in particular magnetization and two spin correlations. Depending on the model parameters, they show a surprisingly rich structure.Comment: LaTeX, 22 pages, 6 embedded Postscript figure

    Spin-3/2 models on the Cayley tree -- optimum ground state approach

    Full text link
    We present a class of optimum ground states for spin-3/2 models on the Cayley tree with coordination number 3. The interaction is restricted to nearest neighbours and contains 5 continuous parameters. For all values of these parameters the Hamiltonian has parity invariance, spin-flip invariance, and rotational symmetry in the xy-plane of spin space. The global ground states are constructed in terms of a 1-parametric vertex state model, which is a direct generalization of the well-known matrix product ground state approach. By using recursion relations and the transfer matrix technique we derive exact analytical expressions for local fluctuations and longitudinal and transversal two-point correlation functions.Comment: LaTeX 2e, 8 embedded eps figures, 14 page

    Mixed Heisenberg Chains. II. Thermodynamics

    Full text link
    We consider thermodynamic properties, e.g. specific heat, magnetic susceptibility, of alternating Heisenberg spin chains. Due to a hidden Ising symmetry these chains can be decomposed into a set of finite chain fragments. The problem of finding the thermodynamic quantities is effectively separated into two parts. First we deal with finite objects, secondly we can incorporate the fragments into a statistical ensemble. As functions of the coupling constants, the models exhibit special features in the thermodynamic quantities, e.g. the specific heat displays double peaks at low enough temperatures. These features stem from first order quantum phase transitions at zero temperature, which have been investigated in the first part of this work.Comment: 12 pages, RevTeX, 12 embedded eps figures, cf. cond-mat/9703206, minor modification

    The square-kagome quantum Heisenberg antiferromagnet at high magnetic fields: The localized-magnon paradigm and beyond

    Get PDF
    We consider the spin-1/2 antiferromagnetic Heisenberg model on the two-dimensional square-kagome lattice with almost dispersionless lowest magnon band. For a general exchange coupling geometry we elaborate low-energy effective Hamiltonians which emerge at high magnetic fields. The effective model to describe the low-energy degrees of freedom of the initial frustrated quantum spin model is the (unfrustrated) square-lattice spin-1/2 XXZXXZ model in a zz-aligned magnetic field. For the effective model we perform quantum Monte Carlo simulations to discuss the low-temperature properties of the square-kagome quantum Heisenberg antiferromagnet at high magnetic fields. We pay special attention to a magnetic-field driven Berezinskii-Kosterlitz-Thouless phase transition which occurs at low temperatures.Comment: 6 figure

    Accurate determination of tensor network state of quantum lattice models in two dimensions

    Full text link
    We have proposed a novel numerical method to calculate accurately the physical quantities of the ground state with the tensor-network wave function in two dimensions. We determine the tensor network wavefunction by a projection approach which applies iteratively the Trotter-Suzuki decomposition of the projection operator and the singular value decomposition of matrix. The norm of the wavefunction and the expectation value of a physical observable are evaluated by a coarse grain renormalization group approach. Our method allows a tensor-network wavefunction with a high bond degree of freedom (such as D=8) to be handled accurately and efficiently in the thermodynamic limit. For the Heisenberg model on a honeycomb lattice, our results for the ground state energy and the staggered magnetization agree well with those obtained by the quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table

    Entanglement and quantum phase transitions in matrix product spin one chains

    Full text link
    We consider a one-parameter family of matrix product states of spin one particles on a periodic chain and study in detail the entanglement properties of such a state. In particular we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other and show that the derivative of both these properties diverge when the parameter gg of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point, the character of the matrix product state which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the entanglement depends on the size of the chain. This later part is relevant to the field of quantum computation where the problem of initial state preparation in finite arrays of qubits or qutrits is important. It is also shown that entanglement of two sites have scaling behavior near the critical point

    Solving Gapped Hamiltonians Locally

    Full text link
    We show that any short-range Hamiltonian with a gap between the ground and excited states can be written as a sum of local operators, such that the ground state is an approximate eigenvector of each operator separately. We then show that the ground state of any such Hamiltonian is close to a generalized matrix product state. The range of the given operators needed to obtain a good approximation to the ground state is proportional to the square of the logarithm of the system size times a characteristic "factorization length". Applications to many-body quantum simulation are discussed. We also consider density matrices of systems at non-zero temperature.Comment: 13 pages, 2 figures; minor changes to references, additional discussion of numerics; additional explanation of nonzero temperature matrix product for

    Some New Exact Ground States for Generalize Hubbard Models

    Full text link
    A set of new exact ground states of the generalized Hubbard models in arbitrary dimensions with explicitly given parameter regions is presented. This is based on a simple method for constructing exact ground states for homogeneous quantum systems.Comment: 9 pages, Late

    Exact ground states of quantum spin-2 models on the hexagonal lattice

    Full text link
    We construct exact non-trivial ground states of spin-2 quantum antiferromagnets on the hexagonal lattice. Using the optimum ground state approach we determine the ground state in different subspaces of a general spin-2 Hamiltonian consistent with some realistic symmetries. These states, which are not of simple product form, depend on two free parameters and can be shown to be only weakly degenerate. We find ground states with different types of magnetic order, i.e. a weak antiferromagnet with finite sublattice magnetization and a weak ferromagnet with ferrimagnetic order. For the latter it is argued that a quantum phase transition occurs within the solvable subspace.Comment: 7 pages, accepted for publication in Phys. Rev.
    corecore