32 research outputs found

    Craig Goch Report No. 14 The production of juvenile Atlantic salmon (Salmo salar L.) in the Upper Wye, Wales

    Get PDF
    Apart from the work of Egglishaw (1970) there are few data available on the production of Atlantic salmon (Salmo salar L.) in freshwaters. Stream studies on salmon are generally confined to the enumeration of smolts (Elson, 1957a; Meister, 1962; Jessop, 1975). In contrast, the production of brown trout (S. trutta L.), brook trout (Salvelinus fontinalis Mitchill) and coho salmon (Oncorhynchus kisutch Walbaum) is well documented (Allen, 1951; Hunt 1974; Chapman, 1965). This paper reports estimates of salmon production (sensu Ivlev, 1966) in 16 study sites in 16 study sites in the upper catchment of the River Wye over a two year period and forms part of a broader study of fish populations in the Wye

    From vocational training to education: the development of a no-frontiers education policy for Europe?

    Get PDF
    This article focuses on developments towards an EU educational policy. Education was not included as one of the Community competencies in the Treaty of Rome. The first half of the article analyses the way that the European Court of Justice and the Commission of the European Communities between them managed to develop a series of substantial Community programmes out of Article 128 on vocational training. The second half of the article discusses educational developments in the community following the Treaty on European Union and the Treaty of Amsterdam. Whilst the legal competence of the community now includes education, the author's argument is that the inclusion of an educational competence will not result in further developments to mirror those in the years before the Treaty on Europe</p

    Pond ecology and conservation: research priorities and knowledge gaps

    Get PDF
    Ponds are among the most biodiverse and ecologically important freshwater habitats globally and may provide a significant opportunity to mitigate anthropogenic pressures and reverse the decline of aquatic biodiversity. Ponds also provide important contributions to society through the provision of ecosystem services. Despite the ecological and societal importance of ponds, freshwater research, policy, and conservation have historically focused on larger water bodies, with significant gaps remaining in our understanding and conservation of pond ecosystems. In May 2019, pond researchers and practitioners participated in a workshop to tackle several pond ecology, conservation, and management issues. Nine research themes and 30 research questions were identified during and following the workshop to address knowledge gaps around: (1) pond habitat definition; (2) global and long-term data availability; (3) anthropogenic stressors; (4) aquatic–terrestrial interactions; (5) succession and disturbance; (6) freshwater connectivity; (7) pond monitoring and technological advances; (8) socio-economic factors; and (9) conservation, management, and policy. Key areas for the future inclusion of ponds in environmental and conservation policy were also discussed. Addressing gaps in our fundamental understanding of pond ecosystems will facilitate more effective research-led conservation and management of pondscapes, their inclusion in environmental policy, support the sustainability of ecosystem services, and help address many of the global threats driving the decline in freshwater biodiversity

    Pond ecology and conservation: research priorities and knowledge gaps

    Get PDF
    Ponds are among the most biodiverse and ecologically important freshwater habitats globally and may provide a significant opportunity to mitigate anthropogenic pressures and reverse the decline of aquatic biodiversity. Ponds also provide important contributions to society through the provision of ecosystem services. Despite the ecological and societal importance of ponds, freshwater research, policy, and conservation have historically focused on larger water bodies, with significant gaps remaining in our understanding and conservation of pond ecosystems. In May 2019, pond researchers and practitioners participated in a workshop to tackle several pond ecology, conservation, and management issues. Nine research themes and 30 research questions were identified during and following the workshop to address knowledge gaps around: (1) pond habitat definition; (2) global and long-term data availability; (3) anthropogenic stressors; (4) aquatic–terrestrial interactions; (5) succession and disturbance; (6) freshwater connectivity; (7) pond monitoring and technological advances; (8) socio-economic factors; and (9) conservation, management, and policy. Key areas for the future inclusion of ponds in environmental and conservation policy were also discussed. Addressing gaps in our fundamental understanding of pond ecosystems will facilitate more effective research-led conservation and management of pondscapes, their inclusion in environmental policy, support the sustainability of ecosystem services, and help address many of the global threats driving the decline in freshwater biodiversity.Additional co-authors: James C. White, Robert A. Briers, Kate L. Mathers, Michael J. Jeffries, and Paul J. Woo

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore