614 research outputs found

    Simulating Online Business Models

    Get PDF
    The online content market for news and music is changing rapidly with the spread of technology and innovative business models (e.g. the online delivery of music, specialised subscription news services). It is correspondingly hard for suppliers of online content to anticipate developments and the effects of their businesses. The paper describes a prototype multiagent simulation to model possible scenarios in this market. The simulation is intended for use by business strategists and has been developed using a participatory, rapid prototyping methodology. The implications of the method and the characteristics of the domain for the design are considered.agent-based modelling, market simulation

    Simulating Knowledge-Generation and -Distribution Processes in Innovation Collaborations and Networks

    Get PDF
    An agent-based simulation model representing a theory of the dynamic processes involved in innovation in modern knowledge-based industries is described. The agent-based approach al-lows the representation of heterogeneous agents that have individual and varying stocks of knowledge. The simulation is able to model uncertainty, historical change, effect of failure on the agent population, and agent learning from experience, from individual research and from partners and collaborators. The aim of the simulation exercises is to show that the artificial innovation networks show certain characteristics they share with innovation networks in knowledge intensive industries and which are difficult to be integrated in traditional models of industrial economics.innovation networks, agent-based modelling, scale free networks

    Global challenges require cross-cutting solutions: bringing together water, energy, and food policy

    Get PDF
    New research led by the Tyndall Centre for Climate Change Research suggests that current UK policies on water, energy and food are too fragmented to effectively tackle global challenges. Issues such as climate change, resource constraints and the increasing population cut across several sectors and need similarly cross-sectoral policies. Future research must meet this challenge by focusing on the nexus between sectors, scales and timeframes

    Simulating the Social Processes of Science

    Get PDF
    Science is the result of a substantially social process. That is, science relies on many inter-personal processes, including: selection and communication of research findings, discussion of method, checking and judgement of others' research, development of norms of scientific behaviour, organisation of the application of specialist skills/tools, and the organisation of each field (e.g. allocation of funding). An isolated individual, however clever and well resourced, would not produce science as we know it today. Furthermore, science is full of the social phenomena that are observed elsewhere: fashions, concern with status and reputation, group-identification, collective judgements, social norms, competitive and defensive actions, to name a few. Science is centrally important to most societies in the world, not only in technical, military and economic ways, but also in the cultural impacts it has, providing ways of thinking about ourselves, our society and our environment. If we believe the following: simulation is a useful tool for understanding social phenomena, science is substantially a social phenomenon, and it is important to understand how science operates, then it follows that we should be attempting to build simulation models of the social aspects of science. This Special Section of <i>JASSS</i> presents a collection of position papers by philosophers, sociologists and others describing the features and issues the authors would like to see in social simulations of the many processes and aspects that we lump together as "science". It is intended that this collection will inform and motivate substantial simulation work as described in the last section of this introduction.Simulation, Science, Science and Technology Studies, Philosophy, Sociology, Social Processes

    The quality of social simulation : an example from research policy

    Get PDF
    This contribution deals with the assessment of the quality of a simulation. After discussing this issue on a general level, we apply and test the assessment mechanisms using an example from policy modelling

    Environment design for emerging artificial societies

    Get PDF
    The NewTies project is developing a system in which societies of agents are expected to develop autonomously as a result of individual, population and social learning. These societies are expected to be able to solve the environmental challenges that they are set by acting collectively. The challenges are intended to be analogous to those faced by early, simple, small-scale human societies. Some issues in the construction of a virtual environment for the system are described and it is argued that multi-agent social simulation has so far tended to neglect the importance of environment design.agent-based modelling, stone age economics, economic anthropolgy

    MakeSense: An IoT Testbed for Social Research of Indoor Activities

    Full text link
    There has been increasing interest in deploying IoT devices to study human behaviour in locations such as homes and offices. Such devices can be deployed in a laboratory or `in the wild' in natural environments. The latter allows one to collect behavioural data that is not contaminated by the artificiality of a laboratory experiment. Using IoT devices in ordinary environments also brings the benefits of reduced cost, as compared with lab experiments, and less disturbance to the participants' daily routines which in turn helps with recruiting them into the research. However, in this case, it is essential to have an IoT infrastructure that can be easily and swiftly installed and from which real-time data can be securely and straightforwardly collected. In this paper, we present MakeSense, an IoT testbed that enables real-world experimentation for large scale social research on indoor activities through real-time monitoring and/or situation-aware applications. The testbed features quick setup, flexibility in deployment, the integration of a range of IoT devices, resilience, and scalability. We also present two case studies to demonstrate the use of the testbed, one in homes and one in offices.Comment: 20 pages, 11 figure
    corecore