140 research outputs found
Synthesis of Regular Polyhexene in Perfluoromethylcyclohexane
This work was supported by the Russian Science Foundation (Ref. ā 18-13-00365)
Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization
Cationic titanium(IV) complexes with ansa-(Ī·5-cyclopentadienyl,Ī·6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the Ī·6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature Ī·1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.
Experimental and Theoretical Study of Zirconocene-Catalyzed Oligomerization of 1-Octene
Zirconocene-catalyzed coordination oligomerization of higher α-olefins is of theoretical and practical interest. In this paper, we present the results of experimental and theoretical study of α-olefin oligomerization, catalyzed by (η5-C5H5)]2ZrX2 1/1′ and O[SiMe2(η5-C5H4)]2ZrX2 2/2′ (X = Cl, Me) with the activation by modified methylalymoxane MMAO-12 or by perfluoroalkyl borate [PhNMe2H][B(C6F5)4] (NBF) in the presence and in the absence of organoaluminium compounds, Al(CH2CHMe2)3 (TIBA) and/or Et2AlCl. Under the conditions providing a conventional mononuclear reaction mechanism, 1′ catalyzed dimerization with low selectivity, while 2′ initiated the formation of oligomers in equal mass ratio. The presence of TIBA and especially Et2AlCl resulted in an increase of the selectivity of dimerization. Quantum chemical simulations of the main and side processes performed at the M-06x/ DGDZVP level of the density functional theory (DFT) allowed to explain experimental results involving traditional mononuclear and novel Zr-Al1 and Zr-Al2 mechanistic concepts
Coordination Ring-Opening Polymerization of Cyclic Esters: A Critical Overview of DFT Modeling and Visualization of the Reaction Mechanisms
Ring-opening polymerization (ROP) of cyclic esters (lactones, lactides, cyclic carbonates and phosphates) is an effective tool to synthesize biocompatible and biodegradable polymers. Metal complexes effectively catalyze ROP, a remarkable diversity of the ROP mechanisms prompted the use of density functional theory (DFT) methods for simulation and visualization of the ROP pathways. Optimization of the molecular structures of the key reaction intermediates and transition states has allowed to explain the values of catalytic activities and stereocontrol events. DFT computation data sets might be viewed as a sound basis for the design of novel ROP catalysts and cyclic substrates, for the creation of new types of homo- and copolymers with promising properties. In this review, we summarized the results of DFT modeling of coordination ROP of cyclic esters. The importance to understand the difference between initiation and propagation stages, to consider the possibility of polymer–catalyst coordination, to figure out the key transition states, and other aspects of DFT simulation and visualization of ROP have been also discussed in our review
Tandem Synthesis of Ultra-High Molecular Weight Drag Reducing Poly-Ī±-Olefins for Low-Temperature Pipeline Transportation
Ultra-high molecular weight poly-Ī±-olefins are widely used as drag reducing agents (DRAs) for pipeline transportation of oil and refined petroleum products. The synthesis of polyolefin DRAs is based on low-temperature ZieglerāNatta (ZN) polymerization of higher Ī±-olefins. 1-Hexene based DRAs, the most effective at room temperature, typically lose DR activity at low temperatures. The use of 1-hexene copolymers with C8āC12 linear Ī±-olefins appears to offer a solution to the problem of low-temperature drag reducing. The present work aims to develop two-stage synthesis of polyolefin DRAs that is based on selective oligomerization of ethylene in the presence of efficient chromium/aminodiphosphine catalysts (Cr-PNP), followed by polymerization of the olefin mixtures, formed at oligomerization stage, using efficient titaniumāmagnesium ZN catalyst. We have shown that oligomerization of ethylene in Ī±-olefin reaction media proceeds faster than in saturated hydrocarbons, providing the formation of 1-hexene, 1-octene, and branched C10 and C12 olefins; the composition and the ratio of the reaction products depended on the nature of PNP ligand. Oligomerizates were used in ZN polymerization āas isā, without additional treatment. Due to branched character of C10+ hydrocarbons, formed during oligomerization of ethylene, resulting polyolefins demonstrate higher low-temperature DR efficiency at low polymer concentrations (~1 ppm) in comparison with benchmark polymers prepared from the mixtures of linear Ī±-olefins and from pure 1-hexene. We assume that faster solubility and more efficient solvation of the polyolefins, prepared using ātandemā ethylene-based process, represent an advantage of these type polymers over conventional poly(1-hexene) and linear Ī±-olefin-based polymers when used as āwinterā DRAs
DFT Modeling of Organocatalytic Ring-Opening Polymerization of Cyclic Esters: A Crucial Role of Proton Exchange and Hydrogen Bonding
Organocatalysis is highly efficient in the ring-opening polymerization (ROP) of cyclic esters. A variety of initiators broaden the areas of organocatalysis in polymerization of different monomers, such as lactones, cyclic carbonates, lactides or gycolides, ethylene phosphates and phosphonates, and others. The mechanisms of organocatalytic ROP are at least as diverse as the mechanisms of coordination ROP; the study of these mechanisms is critical in ensuring the polymer compositions and architectures. The use of density functional theory (DFT) methods for comparative modeling and visualization of organocatalytic ROP pathways, in line with experimental proof of the structures of the reaction intermediates, make it possible to establish these mechanisms. In the present review, which continues and complements our recent manuscript that focused on DFT modeling of coordination ROP, we summarized the results of DFT modeling of organocatalytic ROP of cyclic esters and some related organocatalytic processes, such as polyester transesterification
Osteogenic Differentiation of Human Adipose Tissue-Derived MSCs by Non-Toxic Calcium Poly(ethylene phosphate)s
There is a current clinical need for the development of bone void fillers and bioactive bone graft substitutes. The use of mesenchymal stem cells (MSCs) that are seeded into 3D scaffolds and induce bone generation in the event of MSCs osteogenic differentiation is highly promising. Since calcium ions and phosphates promote the osteogenic differentiation of MSCs, the use of the calcium complexes of phosphate-containing polymers is highly prospective in the development of osteogenic scaffolds. Calcium poly(ethylene phosphate)s (PEP-Ca) appear to be potentially suitable candidates primarily because of PEP’s biodegradability. In a series of experiments with human adipose-tissue-derived multipotent mesenchymal stem cells (ADSCs), we demonstrated that PEP-Ca are non-toxic and give rise to osteogenesis gene marker, bone morphogenetic protein 2 (BMP-2) and mineralization of the intercellular matrix. Owing to the synthetic availability of poly(ethylene phosphoric acid) block copolymers, these results hold out the possibility for the development of promising new polymer composites for orthopaedic and maxillofacial surgery
Design, Synthesis and Actual Applications of the Polymers Containing Acidic P–OH Fragments: Part 1. Polyphosphodiesters
Among natural and synthetic polymers, main-chain phosphorus-containing polyacids (PCPAs) (polyphosphodiesters), stand in a unique position at the intersection of chemistry, physics, biology and medicine. The structural similarity of polyphosphodiesters PCPAs to natural nucleic and teichoic acids, their biocompatibility, mimicking to biomolecules providing the ‘stealth effect’, high bone mineral affinity of polyphosphodiesters resulting in biomineralization at physiological conditions, and adjustable hydrolytic stability of polyphosphodiesters are the basis for various biomedical, industrial and household applications of this type of polymers. In the present review, we discuss the synthesis, properties and actual applications of polyphosphodiesters
- ā¦