7 research outputs found

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    Get PDF
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place

    A comprehensive sampling study on SARS-CoV-2 contamination of air and surfaces in a large meat processing plant experiencing COVID-19 clusters in June 2020.

    Get PDF
    Objective We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight into potential occupational exposure in a large meat processing plant experiencing COVID-19 clusters. Methods: Oro-nasopharyngeal SARS-CoV-2 screening was performed in 76 workers. Environmental samples (n = 275) including air, ventilation systems, sewage, and swabs of high-touch surfaces and workers' hands were tested for SARS-CoV-2 RNA by real-time quantitative polymerase chain reaction. Results: Twenty-seven (35.5%) of the (predominantly asymptomatic) workers tested positive with modest to low viral loads (cycle threshold ≥ 29.7). Six of 203 surface swabs, 1 of 12 personal air samples, and one of four sewage samples tested positive; other samples tested negative. Conclusions: Although one third of workers tested positive, environmental contamination was limited. Widespread SARS-CoV-2 transmission via air and surfaces was considered unlikely within this plant at the time of investigation while strict COVID-19 control measures were already implemented

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    No full text
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place

    Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms

    No full text
    Objective Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. Methods Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. Results Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m 3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. Conclusions Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities

    Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms

    No full text
    OBJECTIVE: Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS: Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS: Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS: Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities

    Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms

    No full text
    OBJECTIVE: Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS: Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS: Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS: Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities
    corecore