5,211 research outputs found

    s-wave scattering and the zero-range limit of the finite square well in arbitrary dimensions

    Full text link
    We examine the zero-range limit of the finite square well in arbitrary dimensions through a systematic analysis of the reduced, s-wave two-body time-independent Schr\"odinger equation. A natural consequence of our investigation is the requirement of a delta-function multiplied by a regularization operator to model the zero-range limit of the finite-square well when the dimensionality is greater than one. The case of two dimensions turns out to be surprisingly subtle, and needs to be treated separately from all other dimensions

    Linearized gravity as a gauge theory

    Full text link
    We discuss linearized gravity from the point of view of a gauge theory. In (3+1)-dimensions our analysis allows to consider linearized gravity in the context of the MacDowell-Mansouri formalism. Our observations may be of particular interest in the strong-weak coupling duality for linearized gravity, in Randall-Sundrum brane world scenario and in Ashtekar formalism.Comment: Latex, 13 page

    Shape invariance approach to exact solutions of the Klein-Gordon equation

    Get PDF
    Using the shape invariance property we obtain exact solutions of the (1+1)dimensional Klein-Gordon equation for certain types of scalar and vector potentials. We also discuss the possibility of obtaining real energy spectrum with non-Hermitian interaction within this framework

    Theory of Electromagnetic Wave Transmission through Metallic Gratings of Subwavelength Slits

    Full text link
    We present FDTD calculations for transmission of light and other electromagnetic waves through periodic arrays of slits in a metallic slab. The results show resonant, frequency dependent, transmittance peaks for subwavelength widths of the slits which can be up to a factor of ten with respect to those out of resonance. Although our conclusions agree with previous work by Lezec and Thio as regards both the magnitude of the enhancement and the lack of contribution of surface plasmon polaritons of the metal surface to this effect, we derive an interpretation from a theory that deals with emerging beam- Rayleigh anomalies of the grating, and with Fabry-Perot resonances of the perforated slab considered as an effective medium.Comment: 12 pages 3 figure

    Self-Dual Conformal Supergravity and the Hamiltonian Formulation

    Full text link
    In terms of Dirac matrices the self-dual and anti-self-dual decomposition of a conformal supergravity is given and a self-dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variabes include the self-dual spin connection i.e. the Ashtekar connection rather than the triad. The Hamiltonian formulation and the constraints are obtained by using the Dirac-Bergmann algorithm. PACS numbers: 04.20.Cv, 04.20.Fy,04.65.+

    Towards an Ashtekar formalism in eight dimensions

    Full text link
    We investigate the possibility of extending the Ashtekar theory to eight dimensions. Our approach relies on two notions: the octonionic structure and the MacDowell-Mansouri formalism generalized to a spacetime of signature 1+7. The key mathematical tool for our construction is the self-dual (antiself-dual) four-rank fully antisymmetric octonionic tensor. Our results may be of particular interest in connection with a possible formulation of M-theory via matroid theory.Comment: 15 pages, Latex, minor changes, to appear in Class. Quantum Gra

    Exact, E=0, Solutions for General Power-Law Potentials. I. Classical Orbits

    Full text link
    For zero energy, E=0E=0, we derive exact, classical solutions for {\em all} power-law potentials, V(r)=γ/rνV(r)=-\gamma/r^\nu, with γ>0\gamma>0 and <ν<-\infty <\nu<\infty. When the angular momentum is non-zero, these solutions lead to the orbits (˚t)=[cosμ(th(t)th0(t))]1/μ\r(t)= [\cos \mu (\th(t)-\th_0(t))]^{1/\mu}, for all μν/210\mu \equiv \nu/2-1 \ne 0. When ν>2\nu>2, the orbits are bound and go through the origin. This leads to discrete discontinuities in the functional dependence of th(t)\th(t) and th0(t)\th_0(t), as functions of tt, as the orbits pass through the origin. We describe a procedure to connect different analytic solutions for successive orbits at the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. Also, we explain why they all must violate the virial theorem. The unbound orbits are also discussed in detail. This includes the unusual orbits which have finite travel times to infinity and also the special ν=2\nu = 2 case.Comment: LaTeX, 27 pages with 12 figures available from the authors or can be generated from Mathematica instructions at end of the fil

    Self-dual gravity and self-dual Yang-Mills in the context of Macdowell-Mansouri formalism

    Get PDF
    In this work we propose an action which unifies self-dual gravity and self-dual Yang-Mills in the context of the Macdowell-Mansouri formalism. We claim that such an action may be used to find the S-dual action for both self-dual gravity and self-dual Yang-Mills.Comment: 8 pages, Revtex, no figures, submitted to Phys. Rev.

    Superfield Description of a Self-Dual Supergravity a la MacDowell-Mansouri

    Full text link
    Using MacDowell-Mansouri theory, in this work, we investigate a superfield description of the self-dual supergravity a la Ashtekar. We find that in order to reproduce previous results on supersymmetric Ashtekar formalism, it is necessary to properly combine the supersymmetric field-strength in the Lagrangian. We extend our procedure to the case of supersymmetric Ashtekar formalism in eight dimensions.Comment: 19 pages, Latex; section 6 improve

    Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system

    Full text link
    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma ray observatory, aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a novel aplanatic two-mirror optical design that provides a large field of view of 8 degrees and substantially improves the off-axis performance giving better angular resolution across all of the field of view with respect to single-mirror telescopes. The realization of the SC optical design implies the challenging production of large aspherical mirrors accompanied by a submillimeter-precision custom alignment system. In this contribution we report on the status of the implementation of the optical system on a prototype 9.7 m SC telescope located at the Fred Lawrence Whipple Observatory in southern Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea. All CTA contributions at arXiv:1709.0348
    corecore