4 research outputs found
Water on well-defined platinum surfaces : an ultra high vacuum and electrochemical study
We have investigated the dissociation state of water on platinum electrodes. The desorption of D2, O2, and H2O is influenced significantly by the presence of step sites and the geometry of those sites. Under UHV conditions OH groups can be formed on Pt(111) by pre-covering the surface with O adatoms, causing water to dissociate. We have shown that on stepped platinum surfaces OHad might not be as readily formed as one would assume based on the energetics of OH adsorption alone. Even though the Pt(533) and Pt(553) surfaces have similar geometries, the hydrophobicity on the deuterated surface is surprisingly different: on D/Pt(533) the surface is hydrophobic with water clustering at steps, whereas the entire surface is wet on D/Pt(553). Under electrochemical conditions we show that in spite of the similar looking cyclic voltammograms, the kinetics of underpotential deposited hydrogen are significantly different in acidic and alkaline media. In alkaline media the ad- and desorption process is slow, whereas it is very fast in acidic media. We have pointed out three discrepancies in the current interpretation of the blank cyclic voltammetry of stepped platinum surfaces and propose a co-adsorption model that accounts for these discrepancies.UBL - phd migration 201
Tuning Hydrophobicity of Platinum by Small Changes in Surface Morphology
Catalysis and Surface Chemistr
Long-range influence of steps on water adsorption on clean and D-covered Pt surfaces
Catalysis and Surface Chemistr