10 research outputs found

    Coexistence of competing orders with two energy gaps in real and momentum space in high-Tc superconductor Bi2Sr2-xLaxCuO6+delta

    Full text link
    The superconducting phase of the high-Tc cuprates has been thought to be described by a single d-wave pairing order parameter. Recently, there has been growing evidence suggesting that another form of order, possibly inherited from the pseudogap phase above Tc, may coexist with superconductivity in the underdoped regime. Through a combined study of scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we report the observation of two distinct gaps (a small-gap and a large-gap) that coexist both in real space and in the anti-nodal region of momentum space in the superconducting phase of Bi2Sr2-xLaxCuO6+delta. We show that the small-gap is associated with superconductivity. The large-gap persists to temperatures above the transition temperature Tc and is found to be linked to short-range charge ordering. Remarkably, we find a strong, short-ranged correlation between the local small- and large- gap magnitudes suggesting that the superconductivity and charge ordering are affected by similar physical processes.Comment: 19 pages, 4 figure

    Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

    Full text link
    High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference

    Unconventional superconductivity

    No full text
    corecore