9 research outputs found
Search for Neutrino-Induced Cascades with AMANDA
We report on a search for electro-magnetic and/or hadronic showers (cascades)
induced by high energy neutrinos in the data collected with the AMANDA II
detector during the year 2000. The observed event rates are consistent with the
expectations for atmospheric neutrinos and muons. We place upper limits on a
diffuse flux of extraterrestrial electron, tau and muon neutrinos. A flux of
neutrinos with a spectrum which consists of an equal mix
of all flavors, is limited to at
a 90% confidence level for a neutrino energy range 50 TeV to 5 PeV. We present
bounds for specific extraterrestrial neutrino flux predictions. Several of
these models are ruled out.Comment: 18 pages, 12 figure
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Comparison of four procedures for the identification of hybrid systems
In this paper we compare four recently proposed procedures for the identification of Piece Wise AutoRegressive eXogenous (PWARX) and switched ARX models. We consider the clustering-based procedure, the bounded-error procedure, and the Bayesian procedure which all identify PWARX models. We also study the algebraic procedure, which identifies switched linear models. We introduce quantitative measures for assessing the quality of the obtained models. Specific behaviors of the procedures are pointed out, using suitably constructed one dimensional examples. The methods are also applied to the experimental identification of the electronic component placement process in pick-and-place machines. © Springer-Verlag Berlin Heidelberg 2005
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer’s disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Recommended from our members
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness