147 research outputs found

    Synthesis, in vitro and in vivo evaluation of 1,3,5-triazines as cannabinoid CB2 receptor agonists

    Get PDF
    The cannabinoid receptors type 2 (CBR2) are attractive therapeutic targets of the endocannabinoid signaling system (ECS) as they are not displaying the undesired psychotropic and cardiovascular side-effects seen with cannabinoid receptor type 1 (CB1R) agonists. In continuation of our previous work on 2,4,6-trisubstituted 1,3,5-triazines as potent CB2 agonists, we synthesized an additional series of more polar analogues (1-10), which were found to possess high CB2R agonist activity with enhanced water solubility. The most potent compound in the series was N-(adamantan-1-yl)-4-ethoxy-6-(4-(2-fluoroethyl)piperazin-1-yl)-1,3,5-triazin-2-amine (9) with EC50 value of 0.60nM. To further evaluate the biological effects of the compounds, the selected compounds were tested in vitro against four different cell lines. A human retinal pigment epithelial cell line (ARPE-19) was used to evaluate the cytotoxicity of the compounds whereas an androgen-sensitive human prostate adenocarcinoma cell line (LNCaP), a Jurkat leukemia cell line and a C8161 melanoma cell line were used to assess the antiproliferative activity of the compounds. The most interesting results were obtained for N-(adamantan-1-yl)-4-ethoxy-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (6), which induced cell viability decrease in prostate and leukemia cell lines, and diminished proliferation of C8161 melanoma cells. The results could be reversed in leukemia cells with the selective CB2R antagonist AM630, whereas in prostate cells the AM630 induced a significant cell viability decrease with a mechanism probably unlinked to CB2 cannabinoid receptor. The antiproliferative effect of 6 on the melanoma cells seemed not to be mediated via the CB1R or CB2R. No cytotoxicity was detected against ARPE-19 cell line at concentrations of 1 and 10ÎŒM for compound 6. However, at 30ÎŒM concentration the compound 6 decreased the cell viability. Finally, in order to estimate in vivo behavior of these compounds, (18)F labeled PET ligand, N-cyclopentyl-4-ethoxy-6-(4-(2-fluoro-18-ethyl)piperazin-1-yl)-1,3,5-triazin-2-amine ([(18)F]5), was synthesized and its biodistribution was determined in healthy male Sprague-Dawley rats. As a result, the tracer showed a rapid (<15min) elimination in urine accompanied by a slower excretion via the hepatobiliary route. In conclusion, we further demonstrated that 1,3,5-triazine scaffold serves as a suitable template for the design of highly potent CB2R agonists with reasonable water solubility properties. The compounds may be useful when studying the role of the endocannabinoid system in different diseases. The triazine scaffold is also a promising candidate for the development of new CB2R PET ligands

    Rotating black hole entropy from M5-branes

    Get PDF
    We compute the superconformal index of 3d N = 2 superconformal field theories obtained from N M5-branes wrapped on a hyperbolic 3-manifold. Exploiting the 3d-3d correspondence, we use perturbative invariants of SL(N, \u2102) Chern-Simons theory to determine the superconformal index in the large N limit, including corrections logarithmic in N. The leading order partition function provides a microscopic foundation for the entropy function of the dual rotating asymptotically AdS4 black holes. We also verify that the supergravity one-loop contribution to the log N term coincides with the field theoretic result. We propose a 3d-3d formulation for the refined topologically twisted index, and provide strong evidence in support of its vanishing \u2014 which agrees with the fact that the expected dual rotating magnetically-charged black hole does not exist. This provides an interesting link between gravity and a tantalizing mathematical result

    q-Virasoro Modular Double and 3d Partition Functions

    Get PDF

    Enhanced Brain Disposition and Effects of Δ9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice

    Get PDF
    The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ9-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT) mice. Abcb1a/b (−/−), Abcg2 (−/−) and wild-type (WT) mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (−/−) and Abcg2 (−/−) mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (−/−) mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis
    • 

    corecore