688 research outputs found

    A constrained Potts antiferromagnet model with an interface representation

    Full text link
    We define a four-state Potts model ensemble on the square lattice, with the constraints that neighboring spins must have different values, and that no plaquette may contain all four states. The spin configurations may be mapped into those of a 2-dimensional interface in a 2+5 dimensional space. If this interface is in a Gaussian rough phase (as is the case for most other models with such a mapping), then the spin correlations are critical and their exponents can be related to the stiffness governing the interface fluctuations. Results of our Monte Carlo simulations show height fluctuations with an anomalous dependence on wavevector, intermediate between the behaviors expected in a rough phase and in a smooth phase; we argue that the smooth phase (which would imply long-range spin order) is the best interpretation.Comment: 61 pages, LaTeX. Submitted to J. Phys.

    Invaded cluster algorithm for a tricritical point in a diluted Potts model

    Full text link
    The invaded cluster approach is extended to 2D Potts model with annealed vacancies by using the random-cluster representation. Geometrical arguments are used to propose the algorithm which converges to the tricritical point in the two-dimensional parameter space spanned by temperature and the chemical potential of vacancies. The tricritical point is identified as a simultaneous onset of the percolation of a Fortuin-Kasteleyn cluster and of a percolation of "geometrical disorder cluster". The location of the tricritical point and the concentration of vacancies for q = 1, 2, 3 are found to be in good agreement with the best known results. Scaling properties of the percolating scaling cluster and related critical exponents are also presented.Comment: 8 pages, 5 figure

    Biot-Savart correlations in layered superconductors

    Full text link
    We discuss the superconductor to normal phase transition in an infinite-layered type-II superconductor in the limit where the Josephson coupling between layers is negligible. We model each layer as a neutral gas of thermally excited pancake vortices. We assume the dominant interaction between vortices in the same and in different layers is the electromagnetic interaction between the screening currents induced by these vortices. Our main result, obtained by exactly solving the leading order renormalization group flow, is that the phase transition in this model is a Kosterlitz--Thouless transition despite being a three--dimensional system. While the transition itself is driven by the unbinding of two-dimensional pancake vortices, an RG analysis of the low temperature phase and a mean-field theory of the high temperature phase reveal that both phases possess three-dimensional correlations. An experimental consequence of this is that the jump in the measured in-plane superfluid stiffness, which is a universal quantity in 2d Kosterlitz-Thouless theory, will receive a small non--universal correction (of order 1% in Bi2_2Sr2_2CaCu2_2O8+x_{8+x}). This overall picture places some claims expressed in the literature on a more secure analytical footing and also resolves some conflicting views.Comment: 16 pages, 2 figures; minor typos corrected, references adde

    An exact universal amplitude ratio for percolation

    Get PDF
    The universal amplitude ratio R~Ο\tilde{R}_{\xi} for percolation in two dimensions is determined exactly using results for the dilute A model in regime 1, by way of a relationship with the q-state Potts model for q<4.Comment: 5 pages, LaTeX, submitted to J. Phys. A. One paragraph rewritten to correct error

    Rotationally induced vortices in optical cavity modes

    Full text link
    We show that vortices appear in the modes of an astigmatic optical cavity when it is put into rotation about its optical axis. We study the properties of these vortices and discuss numerical results for a specific realization of such a set-up. Our method is exact up to first order in the time-dependent paraxial approximation and involves bosonic ladder operators in the spirit of the quantum-mechanical harmonic oscillator.Comment: 8 pages, 5 figures. Accepted for publication in a special issue (singular optics 2008) of Journal of Optics A: Pure and Applied Optic

    Into the depths of C: Elaborating the de facto standards

    Get PDF
    C remains central to our computing infrastructure. It is notionally defined by ISO standards, but in reality the properties of C assumed by systems code and those implemented by compilers have diverged, both from the ISO standards and from each other, and none of these are clearly understood. We make two contributions to help improve this error-prone situation. First, we describe an in-depth analysis of the design space for the semantics of pointers and memory in C as it is used in practice. We articulate many specific questions, build a suite of semantic test cases, gather experimental data from multiple implementations, and survey what C experts believe about the de facto standards. We identify questions where there is a consensus (either following ISO or differing) and where there are conflicts. We apply all this to an experimental C implemented above capability hardware. Second, we describe a formal model, Cerberus, for large parts of C. Cerberus is parameterised on its memory model; it is linkable either with a candidate de facto memory object model, under construction, or with an operational C11 concurrency model; it is defined by elaboration to a much simpler Core language for accessibility, and it is executable as a test oracle on small examples. This should provide a solid basis for discussion of what mainstream C is now: what programmers and analysis tools can assume and what compilers aim to implement. Ultimately we hope it will be a step towards clear, consistent, and accepted semantics for the various use-cases of C.We acknowledge funding from EPSRC grants EP/H005633 (Leadership Fellowship, Sewell) and EP/K008528 (REMS Programme Grant), and a Gates Cambridge Scholarship (Nienhuis). This work is also part of the CTSRD projects sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237.This is the author accepted manuscript. The final version is available from the Association for Computing Machinery via http://dx.doi.org/10.1145/2908080.290808

    Combined longitudinal and transverse noise enhancement in lasers

    Get PDF
    Quantum Matter and Optic

    All-optical 3D atomic loops generated with Bessel light fields

    Full text link
    The propagation invariance of Bessel beams as well as their transversal structure are used to perform a comparative analysis of their effect on cold atoms for four different configurations and combinations thereof. We show that, even at temperatures for which the classical description of the atom center of mass motion is valid, the interchange of momentum, energy and orbital angular momentum between light and atoms yields efficient tools for all-optical trapping, transporting and, in general, manipulating the state of motion of cold atoms.Comment: 13 pages, 9 figure

    A Simple Model of Liquid-liquid Phase Transitions

    Full text link
    In recent years, a second fluid-fluid phase transition has been reported in several materials at pressures far above the usual liquid-gas phase transition. In this paper, we introduce a new model of this behavior based on the Lennard-Jones interaction with a modification to mimic the different kinds of short-range orientational order in complex materials. We have done Monte Carlo studies of this model that clearly demonstrate the existence of a second first-order fluid-fluid phase transition between high- and low-density liquid phases
    • 

    corecore