26 research outputs found

    Adeno-Associated Viral Vectors Based on Serotype 3b Use Components of the Fibroblast Growth Factor Receptor Signaling Complex for Efficient Transduction

    Get PDF
    Adeno-associated virus type 3b (AAV3b) has been largely ignored by gene therapists because of the inability of vectors based on this serotype to transduce target tissues efficiently. Here we describe a phenomenon unique to AAV3b in that vectors based on this serotype mediate enhanced transduction in the presence of heparin. Among the many biological functions attributed to heparin, its interaction with, and ability to regulate, several growth factors (GFs) and growth factor receptors (GFRs) has been well characterized. Using GFR-overexpressing cell lines, soluble GFs and heparins, as well as specific GFR inhibitors, we have demonstrated a requirement for fibroblast growth factor receptor-2 (FGFR2) and FGF1 in the heparin-mediated augmentation of AAV3b vector transduction. In contrast to AAV2, we establish that heparin can be used as an adjunct with AAV3b to further increase transduction in a variety of cells and target tissues, additionally suggesting that AAV3b may be an attractive viral vector for clinical use during procedures in which heparin is used. In summary, AAV3b exhibits FGFR2-dependent, markedly enhanced transduction efficiency in the presence of heparin and FGFs, which could make it a useful vector for gene therapy in a variety of human diseases

    Inhibition of receptor-localized PI3K preserves cardiac β-adrenergic receptor function and ameliorates pressure overload heart failure

    No full text
    β-Adrenergic receptor (βAR) downregulation and desensitization are hallmarks of the failing heart. However, whether abnormalities in βAR function are mechanistically linked to the cause of heart failure is not known. We hypothesized that downregulation of cardiac βARs can be prevented through inhibition of PI3K activity within the receptor complex, because PI3K is necessary for βAR internalization. Here we show that in genetically modified mice, disrupting the recruitment of PI3K to agonist-activated βARs in vivo prevents receptor downregulation in response to chronic catecholamine administration and ameliorates the development of heart failure with pressure overload. Disruption of PI3K/βAR colocalization is required to preserve βAR signaling, since deletion of a single PI3K isoform (PI3Kγ knockout) is insufficient to prevent the recruitment of other PI3K isoforms and subsequent βAR downregulation with catecholamine stress. These data demonstrate a specific role for receptor-localized PI3K in the regulation of βAR turnover and show that abnormalities in βAR function are associated with the development of heart failure. Thus, a strategy that blocks the membrane translocation of PI3K and leads to the inhibition of βAR-localized PI3K activity represents a novel therapeutic approach to restore normal βAR signaling and preserve cardiac function in the pressure overloaded failing heart

    Adeno-Associated Viral Vectors Based on Serotype 3b Use Components of the Fibroblast Growth Factor Receptor Signaling Complex for Efficient Transduction

    No full text
    Adeno-associated virus type 3b (AAV3b) has been largely ignored by gene therapists because of the inability of vectors based on this serotype to transduce target tissues efficiently. Here we describe a phenomenon unique to AAV3b in that vectors based on this serotype mediate enhanced transduction in the presence of heparin. Among the many biological functions attributed to heparin, its interaction with, and ability to regulate, several growth factors (GFs) and growth factor receptors (GFRs) has been well characterized. Using GFR-overexpressing cell lines, soluble GFs and heparins, as well as specific GFR inhibitors, we have demonstrated a requirement for fibroblast growth factor receptor-2 (FGFR2) and FGF1 in the heparin-mediated augmentation of AAV3b vector transduction. In contrast to AAV2, we establish that heparin can be used as an adjunct with AAV3b to further increase transduction in a variety of cells and target tissues, additionally suggesting that AAV3b may be an attractive viral vector for clinical use during procedures in which heparin is used. In summary, AAV3b exhibits FGFR2-dependent, markedly enhanced transduction efficiency in the presence of heparin and FGFs, which could make it a useful vector for gene therapy in a variety of human diseases
    corecore