11 research outputs found

    On the Analysis of Product Appropriateness Principles

    Get PDF
    The purpose of this study is to explore appropriateness of the various products presented in the market and the application of appropriateness principles to the product design. To obtain appropriateness principles, this study compares and analyzes a variety of products available in the market. After obtaining preliminary principles, many times convergence and analysis are operated for getting more accurate principles. Then, AHP method is used for evaluating importance of every appropriateness principles and appropriateness principles are obtained. And, the appropriateness principles are used to construct the design process of appropriateness product. Finally, some design cases are operated and appropriateness principles are evaluated for the products of design cases. The results of this study are obtained 10 appropriateness principles: freedom, demand, environmental protection, effectiveness, intuition, compliance, simplicity, optimal performance, simplicity, fault tolerance. And, weights of appropriateness principles get in this paper

    The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method

    Get PDF
    The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly

    Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People

    Get PDF
    Facilitating navigation in pedestrian environments is critical for enabling people who are blind and visually impaired (BVI) to achieve independent mobility. A deep reinforcement learning (DRL)–based assistive guiding robot with ultrawide-bandwidth (UWB) beacons that can navigate through routes with designated waypoints was designed in this study. Typically, a simultaneous localization and mapping (SLAM) framework is used to estimate the robot pose and navigational goal; however, SLAM frameworks are vulnerable in certain dynamic environments. The proposed navigation method is a learning approach based on state-of-the-art DRL and can effectively avoid obstacles. When used with UWB beacons, the proposed strategy is suitable for environments with dynamic pedestrians. We also designed a handle device with an audio interface that enables BVI users to interact with the guiding robot through intuitive feedback. The UWB beacons were installed with an audio interface to obtain environmental information. The on-handle and on-beacon verbal feedback provides points of interests and turn-by-turn information to BVI users. BVI users were recruited in this study to conduct navigation tasks in different scenarios. A route was designed in a simulated ward to represent daily activities. In real-world situations, SLAM-based state estimation might be affected by dynamic obstacles, and the visual-based trail may suffer from occlusions from pedestrians or other obstacles. The proposed system successfully navigated through environments with dynamic pedestrians, in which systems based on existing SLAM algorithms have failed

    Developing a Kano-Based Evaluation Model for Innovation Design

    No full text
    This research focuses on developing a psychology-based evaluation procedure for innovative design. The divergent thinking part of the main innovative design procedure which discussed in this paper is the extensive QFD developed by the author (Wu). The major performance of QFD is to identify the customers’ requirements and their priorities. Then, the proposed extensive QFD helps transform the high priority requirements into appropriate technical characteristics. According to the priorities of product characteristics, the prior engineering parameters will be identified to be the key performances to redesign. For identifying the requirements and achieving the attractive design, we introduce the Kano model to construct the evaluation model. The proposed Kano-based evaluation procedure is mainly used in two stages of the innovative design. First, the evaluation process was used in QFD stage to help identify attractive customers’ requirements, and the other was used in the extension stage to help assess concepts. The flowchart of proposed innovative design procedure with psychology-based evaluation has also been developed. A case study, exercise equipment design, is adopted to explain and verify feasibility of the proposed approach

    Assistive Navigation using Deep Reinforcement Learning Guiding Robot with UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People

    No full text
    Facilitating navigation in pedestrian environments is critical for enabling people who are blind and visually impaired (BVI) to achieve independent mobility. A deep reinforcement learning (DRL)\u2013based assistive guiding robot with ultrawide-bandwidth (UWB) beacons that can navigate through routes with designated waypoints was designed in this study. Typically, a simultaneous localization and mapping (SLAM) framework is used to estimate the robot pose and navigational goal; however, SLAM frameworks are vulnerable in certain dynamic environments. The proposed navigation method is a learning approach based on state-of-the-art DRL and can effectively avoid obstacles. When used with UWB beacons, the proposed strategy is suitable for environments with dynamic pedestrians. We also designed a handle device with an audio interface that enables BVI users to interact with the guiding robot through intuitive feedback. The UWB beacons were installed with an audio interface to to obtain environmental information. The on-handle and on-beacon verbal feedback provides points of interests and turn-by-turn information to BVI users. BVI users were recruited in this study to conduct navigation tasks in different scenarios. A route was designed in a simulated ward to represent daily activities. In real-world situations, SLAM-based state state estimation might be affected by dynamic obstacles, and the visual-based trail may suffer from occlusions from pedestrians or other obstacles. The proposed system successfully navigated through environments with dynamic pedestrians, in which systems based on existing SLAM algorithms have failed

    Dual strategy involving hospital-based study and community-based screening to eliminate hepatitis C in remote areas

    No full text
    Background: /Purpose: To achieve the World Health Organization goal of eliminating viral hepatitis by 2030, a key strategy in resource-limited areas is to identify the areas with high prevalence and to prioritize screening and treatment intervention. We hypothesized that a hospital-based laboratory database could be used to estimate the township- and village-specific anti-hepatitis C virus (HCV) prevalence. Methods: Yunlin County Public Health Bureau has been collecting anti-HCV test data from eight major hospitals. Township- and village-specific screening testing rates and anti-HCV prevalence were calculated for residents 40 years or older. A township with a wide range of anti-HCV prevalence rates was selected for outreach universal screening and for validating the village-specific prevalence of anti-HCV in the analysis of the data from the hospitals. Results: The overall anti-HCV screening testing rate in Yunlin County was 30.4 %, whereas the anti-HCV prevalence rate for persons 40 years or older was 15.4 %. The village-specific anti-HCV prevalence rates ranged from 3.8 % to 85.8 %. Community-based screening was conducted in Kouhu Township. The village-specific anti-HCV prevalence rates ranged from 0 % to 18.8 %. Three of the four villages had the highest village-specific anti-HCV prevalence in the community-based study and the hospital-based study. Additionally, 95.8 % of the new HCV cases detected by universal screening received anti-HCV therapy. Conclusion: The hospital-based database provided a framework for identifying the villages with high anti-HCV prevalence. Additionally, community-based universal screening should be prioritized for villages with high prevalence in hospital-based databases
    corecore