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Facilitating navigation in pedestrian environments is critical for enabling people who are
blind and visually impaired (BVI) to achieve independent mobility. A deep reinforcement
learning (DRL)–based assistive guiding robot with ultrawide-bandwidth (UWB) beacons
that can navigate through routes with designated waypoints was designed in this study.
Typically, a simultaneous localization and mapping (SLAM) framework is used to estimate
the robot pose and navigational goal; however, SLAM frameworks are vulnerable in certain
dynamic environments. The proposed navigation method is a learning approach based on
state-of-the-art DRL and can effectively avoid obstacles. When used with UWB beacons,
the proposed strategy is suitable for environments with dynamic pedestrians. We also
designed a handle device with an audio interface that enables BVI users to interact with the
guiding robot through intuitive feedback. The UWB beacons were installed with an audio
interface to obtain environmental information. The on-handle and on-beacon verbal
feedback provides points of interests and turn-by-turn information to BVI users. BVI
users were recruited in this study to conduct navigation tasks in different scenarios. A route
was designed in a simulated ward to represent daily activities. In real-world situations,
SLAM-based state estimation might be affected by dynamic obstacles, and the visual-
based trail may suffer from occlusions from pedestrians or other obstacles. The proposed
system successfully navigated through environments with dynamic pedestrians, in which
systems based on existing SLAM algorithms have failed.
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1 INTRODUCTION

According to the World Health Organization, the number of
people worldwide who are blind and visually impaired (BVI) is
286 million; therefore, the development of suitable navigation
aids is essential. Currently, due to their low cost and reliability,
white canes are the most commonly used navigation aid by BVI
people (Tapu et al., 2014). Guide dogs are another navigation aid
for helping BVI people avoid contact with other pedestrians;
guide dogs also provide companionship. However, according to
the International Guide Dog Federation, guide dogs are
unavailable in many regions to most BVI people who require
them due to the high cost of animal training and determining
suitable dog–user pairings. Furthermore, some environments are
not service animal friendly. Finally, according to the federation, it
breeding, raising, training, and placing a guide dog costs
approximately US $50,000. This cost may be unaffordable for
many BVI people. Over the past 2 decades, numerous efforts have
been made to develop navigation robots for assisting BVI people.
Several types of robotic navigation aids have been developed,
including robotic canes (Ulrich and Borenstein, 2001;Wang et al.,
2017), walkers (Wachaja et al., 2015, 2017), and suitcases
(Kayukawa et al., 2019, 2020), as well as other mobile
platforms (Kulyukin et al., 2006).

Guiding robots execute navigation, localization, and obstacle
avoidance tasks by sensing the surrounding environment
(Figure 1). Ulrich and Borenstein (2001) proposed the
“GuideCane” robot, which is equipped with a white cane, for
navigation assistance. When the ultrasonic sensors in the
GuideCane robot detect an obstacle, the embedded computer
determines a suitable direction of motion, and steers the robot
(and user) around the obstacle. Kulyukin et al. (2006) designed a
wheeled mobile platform by using a laser rangefinder and radio-
frequency identification (RFID) sensors to navigate indoor
environments with preinstalled RFID tags. Gharpure and
Kulyukin (2008) proposed a robot to help blind people shop.
This robot guides users in a store and informs them of item
prices. Li and Hollis (2019) used a human-sized mobile robot
and human interaction module to provide active navigation
guidance similar to that provided by humans to BVI users.
Nagarajan et al. (2014) developed a human-following system
based on a single two-dimensional (2D) LiDAR mounted on
the pan–tilt turret of a ballbot. Kayukawa et al. (2019) proposed
a suitcase guiding system named BBeep, which includes a sonic
collision warning system for predicting the motions of nearby
pedestrians. An active sound is emitted to alert pedestrians and the
blind user to reduce the risk of collisions. However, this system is
more suitable for use in crowded environments, such as airports,
than in quiet places, such as hospitals, libraries, and restaurants.
Chuang et al. (2018) adopted a learning-based approach for
enabling BVI people to navigate pedestrian environments by
trails-following of the current tactile guide paths. Kayukawa
et al. (2020) developed a guiding suitcase with two RGB-depth
(RGB-D) cameras and employed a convolutional neural network
(CNN)-based object detector for identifying pedestrians. A LiDAR-
based simultaneous localization and mapping (SLAM) algorithm
was used to estimate the egomotion and planned path. When

pedestrians walk across the planned path, the blind user receives an
alert from the system to adjust their walking speed or stop without
changing their path (the on-path mode). If the planned path is
blocked, the system recommends an alternative path around the
pedestrians (the off-path mode). Unlike the BBeep system, the
system of Kayukawa et al. (2019) avoids active sound emission and
the creation of unnecessary attention in quiet environments.

There have been significant developments in two major
techniques on simultaneous localization and mapping (SLAM)
as well as motion planning, which enable robotic systems to
navigate in GPS-denied indoor environments. Nevertheless,
SLAM systems tend to have difficulties with dynamic
environments or textureless scenes, and are vulnerable to
perception outliers (Lajoie et al., 2019b). The unrecoverable
errors from perception may make it infeasible for safe motion
planning. To achieve accurate blind navigation, the degradation
of SLAM algorithms in dynamic environments must be
considered. Although many studies have been conducted on
the detection and avoidance of static obstacles, to our
knowledge studies on collision avoidance with dynamic
pedestrians for blind navigation are scarce. In contrast to the
classic map-localize-plan approaches, deep reinforcement
learning (DRL) realizes goal navigation and collision
avoidance capabilities, where robots learn to navigate through
trial and error without building a mapping.

For localization to provide assistance in blind navigation, a
common approach is by the use of a beacon network, which
contains beacons that are predeployed in the environment. Such
deployment of beacons showed localization accuracy within
approximately 1.65 m on average by detecting the Bluetooth
signals from a beacon Sato et al. (2017). Guerreiro et al.
(2019) further designed an independent mobility system for
visually impaired travelers in an airport, including four routes
of potential scenarios for independent navigation. The
aforementioned system helped the participants reach their
destination successfully; however, although the participants
provided positive feedback overall, the system failed in tasks
such as navigating door entrances due to the meter-scale
position error.

Voice navigation (e.g., through smartphones) is commonly
used for blind navigation. Sato et al. (2017) provided turn-by-
turn instructions as well as information on landmarks and
nearby points of interest (POIs). The assessment results
obtained for the aforementioned application by Guerreiro
et al. (2019) with more than 14 participants indicated its
feasibility in the real world. The subjective responses of the
participants confirmed that semantic features are helpful for
constructing spatial maps for navigation. Furthermore, most
participants held a positive attitude toward navigating
independently in any unfamiliar environment at different
times of the day. However, voice navigation requires users to
follow frequent navigational cues carefully. Therefore,
navigation by using mobile robots is preferred to voice
navigation for reducing the cognitive loads of users.

This study is an extension of our previous research (Wang
et al., 2017; Chuang et al., 2018; Lu et al., 2021). The contributions
of this study are as follows:
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1. We propose a mobility aid that extends the navigation
assistance provided by a white cane and guide dog with
high reliability. The physical interface was constructed
using a rigid handle equipped on the proposed guiding
robot. The body yaw produces a haptic signal to allow the
user to follow its movement intuitively.

2. A DRL approach is presented for a robot designed to follow
selected waypoints and avoid static or dynamic obstacles. To
achieve more precise positioning than existing Bluetooth Low
Energy (BLE) solutions, an ultrawide-bandwidth (UWB)
localization system is proposed to overcome the influences
of dynamic obstacles in the environment, which have been
found challenging by classic map-localize-plan approaches.

3. An integrated UWB/Voice Beacon is designed to form a
beacon network and to provide voice feedback. Voice
instructions is provided through on-beacon and on-robot
feedback, such as travel destination information, and
responds to queries for physical assistance, such as whether
to go, stop, or change speed when traveling. An investigation
was conducted with BVI users to evaluate the performance of
the proposed system.

2 RELATED WORK

2.1 Mobile Robot for Assistive Technology
Due to advances in autonomous driving and robotics, the
applications of mobile robots have increased considerably. The
applications of mobile robots in assistive technology include
navigation robots for BVI people and robotic wheel chairs
(Hersh, 2015). Wachaja et al. (2015) developed a smart walker
for blind people with walking disabilities. This walker consists of
two laser range scanners for sensing local obstacles and a standard
notebook computer to perform all computations for reaching the
desired location. Wachaja et al. (2017) modeled human motion
with a walker on the basis of recorded trajectories to design a
controller that considers the user’s reaction time, rotational
radius, and speed.

Similarly, the comfort level is a crucial factor related to robotic
wheel chairs. Gulati et al. (2009) formulated discomfort as a
weighted sum of the total travel time and time integrals of various
kinematic quantities to plan trajectories that minimize
discomfort. Morales et al. (2013) presented a “comfort map”
that integrates the human factor into the SLAM framework.
Subsequently, Morales et al. (2014, 2015) investigated the
comfort level through visibility analysis to plan trajectories
that minimize the discomfort level.

In contrast to wheelchair users, BVI people tend to use
navigation assistance technologies when traveling alone. Users
of robotic wheel chairs are often accompanied by a caregiver or
companion. Therefore, the design goals of robotic wheel chairs
may be different from guiding robots in order to move alongside
humans smoothly. Recent work (Kobayashi et al., 2009, 2011,
2011) investigated the interaction between a caregiver and a
robotic wheel chair. The robotic wheelchair used an
omnidirectional camera and a laser rangefinder (i.e., a 2D
LiDAR) to track companions that might be alongside or in

front of the wheelchair according to the visual laser tracking
technique.

2.2 Wearable/Smartphone-Based
Navigation Aids—Beacon Network and
Voice Feedback
A wearable or smartphone-based device has several advantages,
such as small size and light weight. Wearable technologies can be
used for navigation aid; however, wearable devices, which are
customized and dedicated devices, are sometimes impractical to
use without mass production. A smartphone-based indoor assistant
application does not require an additional device. This application
can provide speech-based inputs, vibrations, sound events, or verbal
instructions without the installation of any sensors.

Smartphone-based navigation aids have been used to locate
the positions of users’ smartphone using Bluetooth Low Energy
(BLE) (Sato et al., 2017). BLE uses 40 channels in the 2.4-GHz
band. In general a positioning error of 2.6 m is achieved 95% of
the time for a dense BLE network (one beacon per 30 m2)
(Faragher and Harle, 2015). UWB modules estimate the
position of a UWB tag within the space spanned by three or
more UWB beacons through triangulation. There have been
robotics applications combining onboard UWB tag with
inertial measurement units (IMU) or gyroscope sensors, to be
localized in environments with pre-deployed UWB beacons
(Mueller et al., 2015; Mai et al., 2018; Cao et al., 2020).
Nevertheless, to our knowledge the uses of UWB modules and
DRL methods have not been reported in the literature for
navigation aids to BVI users.

2.3 Nonvisual Interfaces
All the aforementioned guiding robots and some wearable/
smartphone-based navigation aids are equipped with nonvisual
and haptic feedback instead of auditory signals. Audio feedback is
considered undesirable and restrictive in noisy environments and
interferes with the perception of ambient sound for situational
awareness. Wachaja et al. (2017) paired the walker with a
wirelessly connected vibrating belt that has five motors. This
belt must be worn by the user around the waist, and two
additional vibration motors were attached to the walker
handles. The vibration intensity and pattern of each motor
represent navigation commands or the distance to the closest
obstacle within the available angular range. Users were found to
favor the vibration motors in the handles over those in the belt.
The belt provided a higher spatial resolution than the handles did
and thus conveyed more information. Wang et al. (2017)
developed a system that provides feedback to the user through
a haptic device with five vibration motors on a belt. This belt
vibrates at a suitable location on the user’s body or through a
braille display, which allows the user to feel the occupancy grid or
object description with their fingers. These interfaces reflect the
local state of the environment to assist the user in navigating
objects, such as empty chairs. Users reported that they could
easily acclimatize to the haptic belt interface and found it
moderately comfortable. Moreover, the signals were readily
interpretable. Braille displays offer rich high-level feedback in
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a discrete manner; however, the reaction times of users are long
when using such displays because the sweeping of fingers on
braille cells requires time. Katzschmann et al. (2018) proposed the
embedding of small and lightweight sensors with haptic devices
into clothes for enabling discrete environment navigation. Such
an embedded system, which includes a haptic feedback array,
allows users to sense low- and high-hanging obstacles as well as
physical boundaries in their immediate environment for local
navigation. The aforementioned system allows blind people to
complete key activities that they would normally perform with a
white cane in a similar amount of time. Kayukawa et al. (2020)
introduced tactile shape-changing interfaces to indicate fine
directions. The “Animotus” feedback system is a cube-shaped
interface that conveys heading directions, and it allows users to
adjust the status of the robot. Nagarajan et al. (2014) combined
coarse interactive forces with speech cues to fine-tune the position
of the person being led. Other solutions have been proposed for
safe navigation with wearable and nonvisual feedback devices,
refer to (Wang et al., 2017).

3 HARDWARE AND FEEDBACK SYSTEM
OF THE PROPOSED GUIDING ROBOT

3.1 Guiding Robot Hardware
The proposed guiding robot was constructed on the Clearpath Jackal
UGV, which is suitable for indoor and outdoor terrains (Figure 2).
In this study, the proposed robot was navigated mainly on flat
surfaces and a few stairs, which represent most urban environments.
The robot contains a sensor tower for mounting all the sensors,
including a Velodyne LiDAR VLP16 sensor (on top of the robot), a
RealSense D435 depth camera with a pan–tilt motor, and an

mmWave module. The mounted sensors are used by the
perception system for tasks such as obstacle detection and wall
following. The computation units include an Intel NUC computer
connected to direct current motors with pulse-width modulation
control and an NVIDIA Jetson TX2 embedded system with 8 GB of
graphics processing unit/central processing unit memory for
onboard processing. Most of the computations, including those
for SLAM that require considerable computation resources, were
executed on an Intel computer. The DRL computations were the
only calculations that required parallel computing; therefore, these
computations were executed in the Jetson TX2 embedded system.
The proposed robot also includes a Pozyx UWB module and UniFi
WiFi access point. The dimensions of the robot are 51 × 43 × 25 cm3

(length × width × height). The robot system, including the sensors,
computation units, and batteries, weighs approximately 25 kg;
thus, the proposed system can be suitably maneuvered by users.
An interactive handle is mounted to provide guiding signals
and semantic information. The overall cost of the robot is
approximately USD 17,000, which is three times cheaper
than the cost of a guide dog.

3.2 Voice Feedback System on the Handle
and Beacon
The UWB/voice beacons used in this study (Figure 3) were
designed to be self-sustaining, including a Raspberry Pi
embedded computer, UWB module, communication
modules, a battery, and speaker for verbal feedback. The
UWB module provides ranges between other UWB modules
at the robot and other nearby beacons for the subsequent robot
state estimation. The Raspberry Pi computer regulates all the
main functions of the beacon, including the communication of

FIGURE 1 | Proposed navigation solution for BVI people. The designed system includes a guiding robot, an interactive harness, and UWB beacons. The system
provides on-harness or on-beacon verbal semantic feedback. Usability studies were conducted to ensure that the designed guiding robot is easily accessible to BVI
users.
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the UWB modules and XBee module, the verbal feedback, and
speaker control. The communication devices include a WiFi
access point, an XBee radio, and a UWB module. The WiFi
access point mesh network enables real-time monitoring and
data logging of the ground truth for safety purposes. The low-
bandwidth but stable XBee radio serves as an emergency stop if
necessary. In addition to range measurements, the UWB
module requests verbal feedback.

Semantic feedback is provided through on-handle or on-beacon verbal
notifications for different purposes. The on-beacon verbal
notifications are designed to provide situational awareness
regarding not only the target but also the POIs in the
surroundings, such as room numbers, stores, water fountains,
or toilets. The speaker allows BVI people to construct a mental
map of the environment according to nearby POIs.

The main purpose of the on-handle verbal feedback is to
provide individual pieces of information, including the robot
status and trip status, so that users can intuitively understand
current circumstances. Therefore, the on-handle feedback
provided in this study included an update regarding the
distance remaining whenever a POI was reached. A POI was
reached approximately every 10–20 m.

The interactive handle used in this study (Figure 3) is similar
to that used in the study of Chuang et al. (2018). A sliding
button is added to the handle to allow users to adjust the robot’s
velocity among seven levels. A push button is used to stop the
robot in an emergency. The on-handle device is similar to the
proposed UWB/voice beacon, including a speaker, UWB module,
and WiFi module that communicates with the guiding robot. The
on-handle voice feedback is designed to provide high-level
navigation cues that cannot be provided by a white cane or
guide dog, such as notifying the user of an intersection.

4 THE PROPOSED NAVIGATION METHOD

Autonomous navigation is a challenge, especially in dynamic
environments that are often cohabited by various mobile agents.
DRL models (Everett et al., 2018) have been developed to explore

navigation policy through an indoor social environment. These
algorithms predict an optimal path by using a value network trained
through DRL. They use the positions and velocities of a robot and
surrounding agents (e.g., pedestrians) as the input. Chen et al.
(2017) further encodes social norms in the reward function to
enable the trained robots follow socially aware behaviors. In this
study, instead of predicting an optimal path, the DRL agent directly
selected an optimal control command with respect to the state.

We carried out two proposed navigation methods using 1)
DRL and UWB localization, and 2) SLAM and DRL, as well as a
baseline using SLAM and A* planning. All methods consider the
comfort level by either a action soft update (for DRL) or a pure
pursuit controller (for A*) while the robot tracked the path and
computed the required velocity and angular velocity. We carried
out a velocity smoother as a bounded linear function with the
maximum and minimum acceleration as the upper bound and
lower bound to avoid sudden acceleration and abruptly stop.

4.1 Proposed 1: Navigation Using Deep
Reinforcement Learning and
Ultrawide-Bandwidth Localization
The key components of the designed system are displayed in
Figure 4. The UWB/voice beacons are placed at certain POIs,

Algorithm 1 | The proposed navigation using DRL and UWB Localization.

FIGURE 2 | Proposed guiding robot system.
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such as restrooms, elevators, or gates and doors, as waypoints and
other location to enable positioning. The LiDAR point clouds
indicate the state of the environment, and the destination location
(the current waypoint) estimated using the SLAM algorithm or
through UWB localization is directly fed into the navigation
agent. The navigation agent is a DRL policy that outputs a velocity
v and an angular velocity ω to the motor controller without using
a path planning algorithm. Excluding the communication
between the robot and the beacons, all the remaining messages
were exchanged between the components through the robot
operating system (ROS). The pseudocode of this system is
presented in Algorithm 1.

4.1.1 Deep Reinforcement Learning Settings and
Background
The sequential decision-making problem can be formulated as a
partially observable Markov decision process (POMDP) that can
be solved through DRL. POMDP is defined as a six-tuple
(S,A, P,R, ρ0, c) where S denotes the state space, A denotes
the action space, P(s’|s, a) denotes the transition probability, R
denotes the reward function, ρ0 denotes the initial state
distribution, and c denotes the discount factor. The goal is to
optimize deep policy networks by maximizing the cumulative
reward. In this study, we defined the state space as the data points
from the LiDAR and the goal point relative to the guiding robot.
The action space is the normalized linear and angular velocity of
the robot.

The reward function is defined and described below. The
function of the designed robot is to reach the destination while
avoiding collisions. The transition probability is the probability
of one agent moving from one state to another state under the
condition of an action being executed. In early studies on RL and
the Markov decision process, the transition probability was

defined by a matrix expressing the probability of moving
from one state to another. However, in the real world,
countless states exist, and describing these states in matrix
form is impossible. In this study, the transition probability
was defined by the simulator of the robot. The simulator
embedded the transition probability but did not explicitly
specify it. The robot then learned the transition probability
implicitly and attempted to reach the highest accumulated
reward in the training phase. The discount factor determined
how the agent cared about the distant and immediate futures.
We set the discount factor to 0.99, as suggested by Barth-Maron
et al. (2018).

We adopted the DRL method proposed by Lu et al. (2021) to
train our agent. In contrast to CADRL, the proposed method
directly maps the state space (i.e., the LiDAR points) to control
commands. Furthermore, the proposed method allows continuous
control, which increases robot flexibility. On train a generalized
model, a Gazebo environment was used as the training
environment in this study. Gazebo is a widely used simulator in
robotics that can accurately and efficiently simulate populations
and sensors of robots in complex indoor and outdoor
environments. The training environment, which contained
tunnels of diverse sizes and shapes, was designed by the
Subterranean Challenge team from DARPA. The simulated
vehicle had similar properties to those of the Husky UGV
manufactured by Clearpath. An DRL agent is trained using the
state, action, and reward, which are defined in the following text.

• Observations: We used 240°, from −120° to 120° with a
resolution of 1° in the field of view of the LiDAR points. We
concatenated four consecutive frames of range data and 10
frames of relative positions to the goal point as a single
observation space.

FIGURE 3 | The integrated Ultrawide-Bandwidth (UWB)/Voice beacon contains a Raspberry Pi (RPi) embedded computer, a battery, a UWBmodule and a speaker
for verbal feedback. Communication devices include a WiFi Access Point (AP), XBee radio, and a UWB module.
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• Actions: The actions were designed as linear and angular
actions. Linear actions were limited to [0,1], and angular
actions were limited to [−1, 1].

• Reward: To ensure that the robot reaches the goal and
avoids collisions simultaneously, we established a dense
reward function as follows: 1) relative position toward
the goal, 2) reaching the goal, and 3) penalty for collision.

r goal � { 0.2 if Toward the goal
−0.2 else

r reach � { 100 if Reach the goal
0 else

r collision � {−10 if Collision
0 else

r � r goal + r reach + r collision

4.1.2 Training
The developed model was trained using the Distributed
Distributional Deep Deterministic Policy Gradient (D4PG)
Barth-Maron et al. (2018). During the training, the agent
extracts information from the actor network to collect data
(i.e., the state-action-reward triad) and stores these data in a
“replay buffer.” The algorithm then samples from the replay
buffer to train the agent. The navigation agent is trained only
with simulated data and no real-world data. This method
allows the achievement of distributed training, which
involves obtaining experience from multiple agents in
multiple simulators simultaneously. The aforementioned
method has an actor–critic structure to train the agent.
Unlike other actor–critic methods, such as the Deep
Deterministic Policy Gradient (DDPG) Lillicrap et al.

(2019), the D4PG uses a distributional critic network to
enable robust value estimation.

4.1.3 Network Architecture
The critic and actor networks share a similar architecture. First, a
frame of stacked one-dimensional LiDAR points is fed to a one-
dimensional CNN network. The CNN network extracts features
for the subsequent network. Then, the flattened features are
concatenated with the stacked goal points as a representation of
the state. Frames are stacked so that the agent can learn from the
inputs for a certain duration instead of for a single timestamp. A
fully connected layer serves as the strategy-making network and
uses the representation to generate the best action (i.e., v and ω) for
the actor network or the best value estimation for the critic network.

4.1.4 Action Soft Update
After the policy network is trained, the agent can navigate with
nearly no collisions. However, the agent may learn an undesired
action, switching the direction of the angular velocity frequently,
which causes the robot to weave often. This motion may cause
unnecessary movement that decrease comfort level for users. To
maintain the direction of angular velocity, we applied a soft
update technique.

ωt � λωt + (1 − λ)ωt−1 (1)

where ωt is the angular velocity at time t, ωt−1 is the angular
velocity at time t − 1 and λ is the update parameter.

4.1.5 Ultrawide-Bandwidth Localization and Extended
Kalman Filter Updates
The Pozyx UWB modules provide positioning capability through
trilateration. Geometrically, a 2D position can be determined by

FIGURE 4 | Key components of the proposed system. The Deep Reinforcement Learning (DRL) algorithm obtains goal information from a series of designated
waypoints through Simultaneous Localization and Mapping (SLAM) or UWB localization. Moreover, it obtains environmental information from LiDAR point clouds. The
adopted algorithm facilitates the proposed guiding robot to achieve navigation and collision avoidance for BVI users. The UWB/Voice beacons estimate ranges as
thresholds for switching waypoints and provide semantic feedback through the handle.
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performing ranging with three reference points whose positions are
known. The reference points or modules are referred to as beacons,
and the positioning module is referred to as the “tag”.

To perform trilateration, the well-known two-way-range method
was used for the tag to perform ranging from the tag to beacons. In
the aforementioned method, ranging is performed by sending a
packet back and forth from one module to other modules and
calculating the packet transmission time. A disadvantage of this
method is that it does not scale well to large areas, where more than
four beacons are required. A module might perform ranging to an
unachievable beacon or an excessive number of beacons, which is
time intensive. The provided library optimizes the aforementioned
method by tracking the position of the tag and only performing
ranging with the closest beacons.

The Pozyx modules perform positioning similar to the global
positioning system through UWB beacons. However, navigation
cannot be conducted through positioning alone; the pose
(i.e., position and orientation) of the robot must also be
determined. Therefore, an extended Kalman filter (EKF) was
used with the aforementioned modules as measurement and the
robot’s internal sensor as the control input. The theory of
localization with EKF was introduced by Thrun et al. (2005).
Sakai et al. (2018) used a simulated global positioning system as
the measurement, simulated an internal measurement unit as the
control input, and applied EKF for localization. Wheel odometry
was used to obtain the control input in the current study;
however, an inertial measurement unit sensor can also be used
to obtain the control input.

4.2 Proposed 2: Navigation With
Simultaneous Localization and Mapping
and Deep Reinforcement Learning
Beside using UWB localization and EKF as the localization
source, the DRL agent can also use SLAM framework as the
localization source. We used GMapping (Grisetti et al., 2007) in
this work which uses laser scan (2D point cloud) and wheel
odometry as the input of the framework. The range
measurements of the UWB beacons were used as the hint for
waypoint switching. When the range measured by a UWB/Voice
beacon is lower than a threshold, which implies that the
waypoints have been passed, the system switches to the next

waypoint and the UWB/Voice beacon and handle provided
verbal feedback to convey environmental information.

4.3 Baseline: Navigation With Classic
Map-Localize-Plan (Simultaneous
Localization and Mapping and A* Planning)
In addition to the learning-based method, we implemented a classic
map-localize-planmethod for baseline comparison.We used the A*
path planning algorithm of Hart et al. (1968) to determine the
optimal (i.e., shortest) path for the robot. The designed system first
projects the local LiDARmap to a 2D gridmap. After the goal point
is provided, the A* path planning algorithm attempts to find the
shortest path from the robot to the goal by minimizing the cost
(i.e., the distance) in a heuristic manner. We set the grid size to
0.3 m to ensure a sufficient margin between the robot and the
obstacles when the robot navigated through narrow passages. Given
the planned path from the current robot pose to the goal, i.e., the
next waypoint, a pure pursuit controller was used to track the path
and computed the desired velocity and angular velocity for the
robot. The controller first found the nearest point on the path using
a designated look ahead distance. Since the robot navigate in a
relatively slow speed, the look-ahead distance was carefully tuned
and fixed so that the robot will not overshoot and oscillate along the
path too much and cause uncomfortable pivoting behavior. As the
nearest point was found, the error of distance and angle of the point
relative to the current pose can be derived. The velocity and the
angular velocity can therefore been derived.

5 EXPERIMENT OF NAVIGATION IN A
PEDESTRIAN ENVIRONMENT

The navigation experiment was designed and conducted to
examine the effect of the proposed DRL with UWB
localization, compared to the two baselines. The SLAM
algorithm has been known to perform well in static
environments but might fail in environments with numerous
pedestrians or occlusions created by dynamic obstacles (Figure 5).

5.1 Experiment Setup
A beacon network was deployed in an environment, and the
proposed UWB/voice beacons were used. The relative positions

Algorithm 2 | Navigation with SLAM and DRL.

Algorithm 3 | Classic map-localize-plan approach.
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of the beacons were bemeasured. Figure 6A displays the setup of the
UWB/voice beacons, and the robot was programmed to follow a
certain predefined waypoints. The total setup time, including
measuring the relative position by people with distance measure
one by one, was approximately 40 min. The dynamic obstacles
(i.e., pedestrians), which appear in real-world environments,
affected the performance of the SLAM algorithm. These
pedestrians were categorized into two types: dynamic obstacles
that traveled in the same direction as the robot, which caused
perceptual aliasing Lajoie et al. (2019a). The SLAM algorithm
would find the features on the dynamic obstacles moving along
with the robot and thus wasmisled that the robot did notmove at all.
The other type of pedestrian traveled in arbitrary directions, where
features on the dynamic obstacle dominated over the ones of the
long corridor environment. Two people walked in the environment
during the experiment to model the two aforementioned types of
dynamic obstacles, shown in Figure 5. Five trials were conducted for
each of the methods. All the trials used the same navigation agent,
namely a DRL agent, and had the same parameters.

5.2 Experimental Results
First, the navigation performance was analyzed. The navigation was
more stable and efficient when using UWB positioning than when
using the SLAM algorithm for localization. As presented in Table 1,
although the end point was successfully reached in all trials, the trial
duration when using the SLAM algorithm (317 s) was significantly
longer than that when using UWB positioning (217 s; 100 s and 46%
less time required than in the method based on the SLAM
algorithm). Furthermore, the standard deviation of the trial
duration was higher when the SLAM algorithm was used than
when UWB positioning was used, implying that the navigation
performance was less stable when the SLAM algorithm was used.

The trials performed with the SLAM algorithm (Figure 6B)
exhibited various trajectories. The robot periodically tended to
navigate to the right in a large loop when the waypoint was in
the front at the left side. This navigation result was obtained due to
the poor orientation estimation with the aforementioned algorithm,
which resulted in the robot wrongly estimating the waypoint to its

right rather than its left. This poor orientation estimation also caused
the robot to be trapped along the experiment path in the areas
indicated by the purple and red arrows in Figure 11b. Although the
robot eventually emerged from the trap, it wasted 20–30 s in doing
so. Such entrapment might reduce user trust in the robot. The
presence of pedestrians also caused the SLAM algorithm to
incorrectly estimate the distance traveled in the long corridor.
This algorithm falsely estimated that the robot had arrived at
entrance of the hall (indicated by the green arrow in Figure 6B);
however, the ground truth position of the hall’s entrance was at the
intersections between the paths and the white vertical line in
Figure 6B. Similar cases of poor estimation in long corridors
have been discussed in the study of Song et al. (2019).

Similar navigation performance was observed in the five trials
involving UWB positioning (Figure 6C). However, position
estimation errors of 1–2 m were observed in the y direction in
the corridor. This result was obtained because the corridor was
excessively narrow, which resulted in the beacon being only 1.74m
away from the robot in the y direction. However, the
aforementioned phenomenon was not observed when the robot
navigated outside the corridor, where the positioning and
navigation accuracy increased. A solution for the
aforementioned error in the corridor would be to adopt similar
distances for the beacons in the x direction in x direction to have a
similar distance as well; however, this measure would considerably
increase the number of UWB beacons required.

6 USER STUDY FOR ON-HANDLE AND
ON-BEACON FEEDBACK

We conducted a user study with eight BVI people [mean age �
44.5 years, standard deviation (SD) � 15.51 years; three women]
who had not previously used the proposed system. The detailed
demographics of the research participants are presented in
Table 2. All the participants were recruited through an
association for BVI people in Taiwan. The study protocol was
approved by National Chiao Tung University (NCTU-REC-109-

FIGURE 5 | Two people walking in the environment during the experiment for modeling two types of dynamic obstacles. One person traveled in the same direction
as the robot. Another person passed the robot numerous times. The robot’s route in the figure is the same as that used in the user study; however, the number of UWB
beacons was increased to perform accurate positioning.
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088F). Consent was obtained from each participant, and the study
procedure and tasks were introduced to them. We expected that
the proposed system would be much better than the existing
guiding tools for BVI people. Therefore, in the a priori power
analysis, the total sample size should be 8 to get 1 as the effect size
(ES) under the condition that the alpha is 0.05 and power is 0.8.
We carried out the power analysis with one sample t test.

The experimental site was a hallway in the Boai Campus
BIO–ICT Building on the campus of National Yang Ming
Chiao Tung University (origin is National Chiao Tung
University), Taiwan. We selected this location because its
environment is quiet; thus, the participants could perceive voice
feedback appropriately. The route (see Figure 7) was designed such
that the goal point was a restroom, which the BVI community
suggested is particularly essential in their daily lives. The route
started from an office door and passed through the aforementioned
hallway. A total of one to three people were standing along the
route, which represents a common scenario encountered in indoor
environments. The total length of the route was approximately
65 m, and it contained five UWB beacons.

All the participants were instructed to follow the guiding robot by
holding the handle. Each participant was required to complete the
route in two runs with the proposed 2 (SLAM+DRL) and the baseline
(SLAM+A* path planning)methods.Wemeasured the time taken by
each participant to complete each run. All the participants were asked
to complete a poststudy questionnaire immediately after each run to
understand their 1) perceived difficulty of the route, 2) confidence level
when navigating the route, and 3) willingness to use themobility aid to
navigate similar routes. The adopted questionnaire was based on
the research of Sauro and Dumas (2009). We also conducted a
poststudy interview with the participants after they had completed
all the runs and questionnaires. The interviews contained questions

on the perceived usefulness of the proposed guiding robot, audio
feedback design, handle, and UWB beacons. We excluded data
from one participant (P7) because time limitations prevented him
from completing the route. However, we still conducted a
poststudy interview with him because he had some experience
using the proposed system. We finally reported the achieved ES
and power after the user study.

6.1 Reactions to Interfaces
Table 3 presents an overview of the participants’ performance in
navigating the selected route, as well as participants’ responses
toward both the haptic interface (i.e., the handle) and the voice
feedback. Most of the participants found the designed route easy
to navigate. Their perceived difficulty scores were 2.83 and 2.71
out of 7 when using the proposed method and other method,
respectively. The participants also perceived a medium level of
confidence when using the proposed system (scores of 4.83 and
4.42 out of 7 for the proposed method and other method,
respectively). Almost all the participants had a high intention
to use the proposed system again on a similar route (scores of 6.00
and 6.14 out of 7 for the proposed method and other method,
respectively).

6.1.1 Handle Feedback
In general, the participants found the handle to be convenient to use
(average score of 5.87 out of 7; ES � 3.53, Power � 1.00), and did not
require considerable effort to learn how to use it. However, they were
uncomfortable with the speed of the regulators (average of 3.14 out
of 7; ES � 0.35, Power � 0.22). Many participants indicated that the
maximum speed of the robot was too slow for them. In addition, the
participants believed that the navigation cues were delivered through
the handle at the correct time (average score of 5.5 out of 7, ES� 0.99,
Power � 0.81).

Overall, our participants found the handle feedback of our
system comfortable. The participants felt pretty comfortable when
the system gave a turning feedback (an average score of 1.5 out of 7;
ES � 2.7, Power � 1.00). Some participants mentioned the
unnecessary slewing behavior and sudden speed changes while
navigating, however, most still find the robot comfortable with an
average score of 3.12 out of 7 (ES � 0.51, Power � 0.36) and average
score of 3.00 out of 7 (ES � 0.39, Power � 0.26).

6.1.2 Voice Feedback
Some participants found the auditory cues provided by the on-
handle (5.25 out of 7; ES � 0.51, Power � 0.37) and on-beacon (4.75

TABLE 2 | Demographic information of our participants.

Id Gender Age Eye sight Navigation aid

P1 F 23 Blind Cane
P2 M 52 Blind Cane
P3 M 36 Blind Cane
P4 F 30 Blind Cane
P5 F 46 20/500 for both eyes Cane
P6 M 64 Blind Cane
P7 M 70 Blind Cane
P8 M 35 Blind Cane

TABLE 1 | Navigation experiment using the baseline methods (SLAM + A*) and proposed methods (UWB + DRL; SLAM + DRL) in static or dynamic environments.

Methods Duration (s) Reach G (%) Human inter
Avg. Time/trial

Localization Navigation Env Mean SD Note

SLAM A* Static 236.8 12.6 100 2 Baseline
SLAM A* Dynamic — — 0 5.8 Baseline
UWB DRL Dynamic 217 12.45 100 0 Proposed 1
SLAM DRL Dynamic 317 29.76 100 0 Proposed 2

We found that the baselinemethod performwell in static environment as the proposedmethods, but was unable to reach goal. The proposed onemethod (UWB+DRL) completed all trials
in shortest duration (mean duration marked in bold) without human intervention (risk to collision or trapped until timeout).
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out of 7; ES � 0.32, Power � 0.21) devices to be informative.
Moreover, some of them believed that the information was
provided at the correct time (average score 4.88 out of 7; ES �
0.45, Power � 0.31 for the robot; and average score 5.00 out of 7; ES
� 0.47, Power � 0.33 for the UWB beacons). Nevertheless, these

four responses did not reach significance statistically. In the
interviews, two participants (i.e., P2 and P3) suggested that in
addition to the location information, detailed environmental
information can be provided through the UWB sound beacons.
P2 desired additional directional information on the goal, such as

FIGURE 6 | Navigation with the SLAM algorithm in the dynamic environment was less stable and efficient than was navigation with the UWB beacons. (A) is the
map with the UWB/Voice beacons and the designated route and waypoints. (B) visualizes the robot trajectories using proposed DRL with SLAM. (C) visualizes the robot
trajectories using the proposed DRL with UWB localization. When using the SLAM algorithm, the robot tended to navigate to the right with an unnecessary loop and
become trapped periodically (the red and purple arrows). The movement of pedestrians caused the SLAM algorithm to incorrectly estimate the distance traveled in
a long corridor. The robot locations estimated by the algorithm (the green arrow) were different from the ground truth. Different results were obtained in the trials
conducted with the SLAM algorithm, whereas consistent results were obtained in the trials conducted with the UWB beacons.
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the remaining distance to the goal. He also stated that the sudden
and sometimes overlapping sound feedback made him startled
when navigating. A more pleasing method to provide sound
feedback is a potential future research direction. For example, a
system can use gentle cues (e.g., gradually louder sound effects)
before providing verbal information. Another possible method is to
have the user request verbal information rather than passively
receive information so that they can expect the sound from the
robot and beacons.

6.2 Comparison of the Proposed System
With Existing Guiding Tools
Wecompared the proposed systemwith existing guiding tools (e.g.,
guide canes and traffic light beeping sounds), and the results are
summarized in Table 4. Six out of eight users (75%) preferred the
voice feedback in the proposed method; one user (P7) found no
difference in the feedback of the various tools; and another user
(P2) preferred the beeping sound in existing guide tools. P2 stated
that he was startled by the voice feedback from our robot andUWB
sound beacons.We believe that a gentler tone of voice feedback can
be adopted in the future. The user responses of proposed method
were then encoded as one for no difference, two for proposed over

existing methods, and 0 otherwise. We found a significant effect
toward the proposedmethod (ES� 2.18, Power� 1.00) In addition,
four of the eight participants (50%) preferred the directional
information (i.e., information on where the robot was heading)
provided by the proposed system (ES � 1.41, Power � 0.97); two
participants found no difference between the information provided
by existing tools and the proposed method; and two other
participants preferred the information provided by existing tools
(i.e., their guiding canes). Some of the participants mentioned
that the unnecessary slewing behavior of the proposed robot
during navigation reduced their preference for the robot. All the
participants stated that the proposed system provides more
useful environmental information than existing guiding tools
do (ES � ∞, Power � 1.00). Seven users preferred both on-
handle and on-beacon sound feedback, and one participant
preferred only on-handle feedback. Finally, seven of the eight
participants preferred using the proposed robotic system for
collision avoidance (ES � 2.47, Power � 1.00), and one
participant preferred existing guiding tools. We hypothesize
that the slow speed and weaving behavior of the proposed robot
reduced his preference for it. Future studies can attempt to
develop smoother navigation systems that can avoid all possible
collisions.

FIGURE 7 | Trajectories for four trials in the user study. The trials were performed with DRL agents. The agents using the same navigation method tended to exhibit a
similar navigation performance. In contrast to the A* agent, the DRL agents learned smooth paths to avoid obstacles regardless of the changing environment.

TABLE 3 | Descriptive Statistics of the answers provided by the participants regarding haptic (i.e., handle) feedback and sound feedback. SD, standard deviation; SE,
standard error of the mean; ES, effect size.

No Questions (on a 7-point scale, 1:strongly disagree to 7:strongly agree) Mean SD Se ES Power

Q1 Whether the robot is user friendly? 5.87 1.96 0.26 3.53 1.00
Q2 Whether the speed regulator is useful for you? 3.14 2.29 0.94 0.35 0.22
Q3 Whether the auditory cues provided by the robot is sufficient? 5.25 2.27 0.86 0.51 0.37

Whether the auditory cues provided by sound-UWB beacons is sufficient? 4.75 2.16 0.82 0.32 0.21
Q4 Whether the handle provided the environment cues in the right time? 5.5 1.41 0.54 0.99 0.81

Whether the robot provided the auditory cues in the right time? 4.88 1.83 0.69 0.45 0.31
Whether the sound-UWB beacons provided the auditory cues in the right time? 5 2 0.76 0.47 0.33

Q5 Are there uncomfortable slewing behaviors? 3.12 1.73 0.61 0.51 0.36
Do you feel dizzy or uncomfortable while being assisted to make turns? 1.5 0.93 0.33 2.7 1.00
Are there uncomfortable sudden speed changes? 3 2.56 0.91 0.39 0.26
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6.3 General Feedback From the Participants
The ability to navigate in unfamiliar environments is crucial
for BVI users. Three participants (P4, P5, and P6) mentioned
that the proposed system would be particularly useful when
navigating in unfamiliar environments, such as department
stores, in particular or outdoor areas in general. The proposed
navigation system might be less useful in familiar
environments because users already have a clear mental
map of the surroundings and can orient themselves easily.
However, a strong navigation system is still required if users
have never visited a location.

Two participants (P2 and P7) stated that the proposed system
can be improved if it enables navigation on rough terrain.
Although the user study was conducted in an indoor
environment, our base robot (i.e., Jackal UGV) can navigate
general outdoor terrains, such as roads or grass. Considering
user needs, future user studies with the proposed system can be
conducted in outdoor environments (e.g., streets).

Two other participants (P3 and P4) suggested that the
proposed robot should contain a basket to assist them with
daily life. For example, they can place groceries in the basket
when shopping. Although such a feature may be irrelevant to the
goal of the guiding system (i.e., assisting navigation), the user
feedback indicates that an ideal personal guiding robot should be
multifunctional. This phenomenon is similar to people expecting
other functionalities from smartphones in addition to its main
purpose as a communication tool.

6.4 Future Improvement According to
Participant Feedback
First, the maximum speed and stability of the proposed robot
should be increased. All the participants considered the speed
adjuster useless because the maximum speed was too low,
and they set the robot speed to the highest value. To increase
the navigation speed without causing unwanted slewing, a
more stable navigation agent is required. The features of
stability and speed increase can be added to the reward
function of the RL algorithm so that the robot can learn
these features.

Second, although the proposed robot system provides more
environmental information than existing guiding systems do, the
manner in which this information is provided can startle some
users. A more appropriate method of providing sound feedback is
required. One suggestion is to use a gentler voice to provide

information. Another suggestion is to provide information only
when requested by the user, which would result in the user
expecting to hear voices from the robot.

7 CONCLUSION

In this paper, we propose an assistive navigation system for
BVI people. The proposed navigation system includes a DRL-
based guiding robot and a handle device with UWB sound
beacons. The proposed robot can navigate through routes
defined by a series of designated waypoints where UWB
beacons are located and use SLAM estimated robot state.
The goal points are then fed to the navigation policy, which is
trained using a state-of-the-art DRL algorithm. The proposed
robot also contains a handle device that can provide a haptic
and audio interface that BVI users can interact with.
Moreover, the adopted UWB beacons provide
environmental information through sound feedback. We
conducted a user study in an indoor environment that
represents the daily navigation assistance demands of BVI
users. The users had confidence in the proposed robot system
and a strong intention to use it. Moreover, they considered
the proposed system to be user friendly. The auditory cues
from the robot and UWB sound beacons were generally
sufficient for providing relevant information. The users
voiced that the proposed robot system is useful for
navigation in unfamiliar environments. They also
suggested that the robot have multiple functions and the
ability to navigate on rough terrain. Future research
directions include increasing the comfort level of the
guiding system and using gentler audio cues. Moreover,
additional UWB beacons can be used to avoid the effects
of dynamic obstacles in environments. A comparison was
conducted between the navigation performance achieved
when using the SLAM algorithm and UWB positioning for
localization. The SLAM algorithm was affected by dynamic
obstacles, which resulted in reduced navigation efficiency and
stability.
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TABLE 4 | Comparisons of existing and the proposed navigation aid.

No Questions Mean SD Se ES Power

1 Feedback system (sound vs. voice) 1.63 0.74 0.26 2.18 1.00
2 Providing heading info 1.25 0.89 0.31 1.41 0.97
3 Providing POI info (stairs, restroom etc) 2.00 0.00 0.00 ∞ 1.00
4 Avoid collisions 1.75 0.71 0.25 2.47 1.00

The user responses of proposedmethodwere scored as one for no difference, two for proposed over existingmethods, and 0 otherwise. SD: standard deviation; SE: standard error of the
mean; ES: effect size.
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