64 research outputs found

    Performance of Plasma Coproporphyrin I and III as OATP1B1 Biomarkers in Humans

    Get PDF
    A previous study in 356 healthy Finnish volunteers showed that glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G) and glycodeoxycholate 3-O-glucuronide (GDCA-3G) are promising biomarkers of organic anion transporting polypeptide 1B1 (OATP1B1). In the same cohort, we now evaluated the performances of two other OATP1B1 biomarkers, coproporphyrin I (CPI) and III (CPIII), and compared them with GCDCA-3G and GDCA-3G. Based on decreased (*5 and *15) and increased (*14 and *20) function SLCO1B1 haplotypes, we stratified the participants to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Fasting plasma CPI concentration was 68% higher in the poor (95% confidence interval, 44%, 97%; P = 1.74 x 10(-10)), 7% higher in the decreased (0%, 15%; P = 0.0385), 10% lower in the increased (3%, 18%; P = 0.0087), and 23% lower in the highly increased (1%, 40%; P = 0.0387) function group than in the normal function group. CPIII concentration was 27% higher (7%, 51%; P = 0.0071) in the poor function group than in the normal function group. CPI and CPIII detected poor OATP1B1 function with areas under the precision-recall curve (AUPRC) of 0.388 (95% confidence interval, 0.197, 0.689) and 0.0798 (0.0485, 0.203), and receiver operating characteristic curve (AUROC) of 0.888 (0.851, 0.919) and 0.731 (0.682, 0.776). The AUPRC and AUROC of GCDCA-3G were, however, 0.389 (0.258, 0.563) and 0.100 (-0.0046, 0.204; P = 0.0610) larger than those of CPI, and 0.697 (0.555, 0.831) and 0.257 (0.141, 0.373; P < 0.0001) larger than those of CPIII. In conclusion, these data indicate that plasma CPI outperforms CPIII in detecting altered OATP1B1 function, but GCDCA-3G is an even more sensitive OATP1B1 biomarker than CPI.Peer reviewe

    Extracting Canopy Surface Texture from Airborne Laser Scanning Data for the Supervised and Unsupervised Prediction of Area-Based Forest Characteristics

    Get PDF
    Area-based analyses of airborne laser scanning (ALS) data are an established approach to obtain wall-to-wall predictions of forest characteristics for vast areas. The analyses of sparse data in particular are based on the height value distributions, which do not produce optimal information on the horizontal forest structure. We evaluated the complementary potential of features quantifying the textural variation of ALS-based canopy height models (CHMs) for both supervised (linear regression) and unsupervised (k-Means clustering) analyses. Based on a comprehensive literature review, we identified a total of four texture analysis methods that produced rotation-invariant features of different order and scale. The CHMs and the textural features were derived from practical sparse-density, leaf-off ALS data originally acquired for ground elevation modeling. The features were extracted from a circular window of 254 m(2) and related with boreal forest characteristics observed from altogether 155 field sample plots. Features based on gray-level histograms, distribution of forest patches, and gray-level co-occurrence matrices were related with plot volume, basal area, and mean diameter with coefficients of determination (R-2) of up to 0.63-0.70, whereas features that measured the uniformity of local binary patterns of the CHMs performed poorer. Overall, the textural features compared favorably with benchmark features based on the point data, indicating that the textural features contain additional information useful for the prediction of forest characteristics. Due to the developed processing routines for raster data, the CHM features may potentially be extracted with a lower computational burden, which promotes their use for applications such as pre-stratification or guiding the field plot sampling based solely on ALS data.Peer reviewe

    Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport : Methodology, Pitfalls, and Interpretation

    Get PDF
    Many drug-drug interactions (DDIs) are based on alterations of the plasma concentrations of a victim drug due to another drug causing inhibition and/or induction of the metabolism or transporter-mediated disposition of the victim drug. In the worst case, such interactions cause more than tenfold increases or decreases in victim drug exposure, with potentially life-threatening consequences. There has been tremendous progress in the predictability and modeling of DDIs. Accordingly, the combination of modeling approaches and clinical studies is the current mainstay in evaluation of the pharmacokinetic DDI risks of drugs. In this paper, we focus on the methodology of clinical studies on DDIs involving drug metabolism or transport. We specifically present considerations related to general DDI study designs, recommended enzyme and transporter index substrates and inhibitors, pharmacogenetic perspectives, index drug cocktails, endogenous substrates, limited sampling strategies, physiologically-based pharmacokinetic modeling, complex DDIs, methodological pitfalls, and interpretation of DDI information.Peer reviewe

    Incidence, preventability, and causality of adverse drug reactions at a university hospital emergency department

    Get PDF
    Purpose To investigate the characteristics of ADRs in patients admitting at the emergency room of a tertiary hospital. Methods We collected the patient records of 1600 emergency room visits of a university hospital in 2018. The patient files were studied retrospectively and all possible ADRs were identified and registered. Patient characteristics, drugs associated with ADRs, causality, severity, preventability, and the role of pharmacogenetics were assessed. Results There were 125 cases with ADRs, resulting in a 7.8% overall incidence among emergency visits. The incidence was greatest in visits among elderly patients, reaching 14% (men) to 19% (women) in the 80-89 years age group. The most common causative drugs were warfarin, acetylsalicylic acid (ASA), apixaban, and docetaxel, and the most common ADRs were bleedings and neutropenia and/or severe infections. Only two of the cases might have been prevented by pharmacogenetic testing, as advised in Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. Conclusion The same ATC classes, antithrombotics and cytostatics, were involved in ADRs causing university clinic hospitalizations as those identified previously in drug-related hospital fatalities. It seems difficult to prevent these events totally, as the treatments are vitally important and their risk-benefit-relationships have been considered thoroughly, and as pharmacogenetic testing could have been useful in only few cases.Peer reviewe

    Clopidogrel and Gemfibrozil Strongly Inhibit the CYP2C8-Dependent Formation of 3-Hydroxydesloratadine and Increase Desloratadine Exposure In Humans

    Get PDF
    A recent in vitro study suggested that CYP2C8 is essential in the metabolism of desloratadine, an H1 receptor antagonist. If the proposed biotransformation mechanism takes place in vivo in humans, desloratadine could serve as a selective CYP2C8 probe substrate in drug-drug interaction studies. Glucuronide metabo-lites of clopidogrel and gemfibrozil act as time-dependent inhibitors of CYP2C8, but they have not been compared clinically. We conducted a randomized crossover study in 11 healthy subjects to characterize the involvement of CYP2C8 in desloratadine metabolism and to compare the CYP2C8 inhibitory strength of clopidogrel (300 and 75 mg on two following days) with that of gemfibrozil (600 mg BID for 5 days). Compared with placebo (control), clopidogrel increased the area under the plasma concentration-time curve (AUC(0-infinity)) and peak plasma concentration (C-max) of desloratadine to 280% (P = 3 x 10(-7)) and 165% (P = 0.0006), respectively. The corresponding increases by gemfibrozil were to 462% (P = 4 x 10(-7)) and 174% (P = 0.0006). Compared with placebo, clopidogrel and gemfibrozil decreased 3-hydroxyloratadine AUC(0-71h) to 52% (P = 5 x 10(-5)) and 6%(P = 2 X 10(-8)), respectively. Moreover, the 3-hydroxydesloratadine: desloratadine AUC(0-71h) ratios were 21% (P = 7 x 10(-10)) and 1.7% (P = 8 x 10(-11)) of control during the clopidogrel and gemfibrozil phases. Our results confirm that CYP2C8 plays a critical role in the formation of 3-hydroxydesloratadine in humans, making desloratadine a potential CYP2C8 probe substrate. Furthermore, the findings corroborate the previous estimates that clinically relevant doses of clopidogrel cause strong CYP2C8 inhibition, whereas those of gemfibrozil almost completely inactivate the enzyme in humans.Peer reviewe

    Clopidogrel Increases Dasabuvir Exposure With or Without Ritonavir, and Ritonavir Inhibits the Bioactivation of Clopidogrel

    Get PDF
    Dasabuvir is mainly metabolized by cytochrome P450 (CYP) 2C8 and is predominantly used in a regimen containing ritonavir. Ritonavir and clopidogrel are inhibitors of CYP3A4 and CYP2C8, respectively. In a randomized, crossover study in 12 healthy subjects, we examined the impact of clinical doses of ritonavir (for 5 days), clopidogrel (for 3 days), and their combination on dasabuvir pharmacokinetics, and the effect of ritonavir on clopidogrel. Clopidogrel, but not ritonavir, increased the geometric mean AUC(0-infinity) of dasabuvir 4.7-fold; range 2.0-10.1-fold (P = 8 center dot 10(-7)), compared with placebo. Clopidogrel and ritonavir combination increased dasabuvir AUC(0-infinity) 3.9-fold; range 2.1-7.9-fold (P = 2 center dot 10(-6)), compared with ritonavir alone. Ritonavir decreased the AUC(0-4h) of clopidogrel active metabolite by 51% (P = 0.0001), and average platelet inhibition from 51% without ritonavir to 31% with ritonavir (P = 0.0007). In conclusion, clopidogrel markedly elevates dasabuvir concentrations, and patients receiving ritonavir are at risk for diminished clopidogrel response.Peer reviewe

    UGT1A3 and Sex Are Major Determinants of Telmisartan Pharmacokinetics-A Comprehensive Pharmacogenomic Study

    Get PDF
    To investigate how variability in multiple pharmacokinetic genes associates with telmisartan exposure, we determined telmisartan single-dose (40 mg) pharmacokinetics and sequenced 379 genes in 188 healthy volunteers. IntronicUGT1Avariants showed the strongest associations with the area under the plasma concentration-time curve from zero hours to infinity (AUC(0-infinity)) and peak plasma concentration (C-max) of telmisartan. These variants were strongly linked with the increased functionUGT1A3*2allele, suggesting that it is the causative allele underlying these associations. In addition, telmisartan plasma concentrations were lower in men than in women. TheUGT1A3*2was associated with a 64% and 63% reduced AUC(0-infinity)of telmisartan inUGT1A3*2heterozygous and homozygous men, respectively (P = 1.21 x 10(-16)and 5.21 x 10(-8)). In women,UGT1A3*2heterozygosity and homozygosity were associated with 57% (P = 1.54 x 10(-11)) and 72% (P = 3.31 x 10(-15)) reduced AUC(0-infinity), respectively. Furthermore, a candidate gene analysis suggested an association ofUGT1A3*3and theSLCO1B3c.767G>C missense variant with telmisartan pharmacokinetics. A genotype score, which reflects the effects of sex and genetic variants on telmisartan AUC(0-infinity), associated with the effect of telmisartan on diastolic blood pressure. These data indicate that sex and UGT1A3 are major determinants and suggest a role for OATP1B3 in telmisartan pharmacokinetics.Peer reviewe

    Itraconazole Increases Ibrutinib Exposure 10-Fold and Reduces Interindividual Variation-A Potentially Beneficial Drug-Drug Interaction

    Get PDF
    The oral bioavailability of ibrutinib is low and variable, mainly due to extensive first-pass metabolism by cytochrome P450 (CYP) 3A4. The unpredictable exposure can compromise its safe and effective dosing. We examined the impact of itraconazole on ibrutinib pharmacokinetics. In a randomized crossover study, 11 healthy subjects were administered itraconazole 200 mg or placebo twice on day 1, and once on days 2-4. On day 3, 1 hour after itraconazole (placebo) and breakfast, ibrutinib (140 mg during placebo; 15 mg during itraconazole) was administered. Itraconazole increased the dose-adjusted geometric mean area under the concentration-time curve from zero to infinity (AUC(0-infinity)) of ibrutinib 10.0-fold (90% confidence interval (CI) 7.2-13.9; P <0.001) and peak plasma concentration (C-max) 8.8-fold (90% CI 6.3-12.1; P <0.001). During itraconazole, the intersubject variation for the AUC(0-infinity) (55%) and C-max (53%) was around half of that during placebo (104%; 99%). In conclusion, itraconazole markedly increases ibrutinib bioavailability and decreases its interindividual variability, offering a possibility to improved dosing accuracy and cost savings.Peer reviewe

    Comprehensive pharmacogenomic study reveals an important role of UGT1A3 in montelukast pharmacokinetics

    Get PDF
    To identify the genetic basis of interindividual variability in montelukast exposure, we determined its pharmacokinetics and sequenced 379 pharmacokinetic genes in 191 healthy volunteers. An intronic single nucleotide variation (SNV), strongly linked with UGT1A3*2, associated with reduced area under the plasma concentration-time curve (AUC(0-)) of montelukast (by 18% per copy of the minor allele; P=1.83 x 10(-10)). UGT1A3*2 was associated with increased AUC(0-) of montelukast acyl-glucuronide M1 and decreased AUC(0-) of hydroxymetabolites M5R, M5S, and M6 (P <10(-9)). Furthermore, SNVs in SLCO1B1 and ABCC9 were associated with the AUC(0-) of M1 and M5R, respectively. In addition, a candidate gene analysis suggested that CYP2C8 and ABCC9 SNVs also affect the AUC(0-) of montelukast. The found UGT1A3 and ABCC9 variants associated with increased expression of the respective genes in human liver samples. Montelukast and its hydroxymetabolites were glucuronidated by UGT1A3 in vitro. These results indicate that UGT1A3 plays an important role in montelukast pharmacokinetics, especially in UGT1A3*2 carriers.Peer reviewe

    Febuxostat, But Not Allopurinol, Markedly Raises the Plasma Concentrations of the Breast Cancer Resistance Protein Substrate Rosuvastatin

    Get PDF
    Xanthine oxidase inhibitors febuxostat and allopurinol are commonly used in the treatment of gout. Febuxostat inhibits the breast cancer resistance protein (BCRP) in vitro. Rosuvastatin is a BCRP substrate and genetic variability in BCRP markedly affects rosuvastatin pharmacokinetics. In this study, we investigated possible effects of febuxostat and allopurinol on rosuvastatin pharmacokinetics. In a randomized crossover study with 3 phases, 10 healthy volunteers ingested once daily placebo for 7 days, 300 mg allopurinol for 7 days, or placebo for 3 days, followed by 120 mg febuxostat for 4 days, and a single 10 mg dose of rosuvastatin on day 6. Febuxostat increased the peak plasma concentration and area under the plasma concentration-time curve of rosuvastatin 2.1-fold (90% confidence interval 1.8-2.6; P = 5 x 10(-5)) and 1.9-fold (1.5-2.5; P = 0.001), but had no effect on rosuvastatin half-life or renal clearance. Allopurinol, on the other hand, did not affect rosuvastatin pharmacokinetics. In vitro, febuxostat inhibited the ATP-dependent uptake of rosuvastatin into BCRP-overexpressing membrane vesicles with a half-maximal inhibitory concentration of 0.35 mu M, whereas allopurinol showed no inhibition with concentrations up to 200 mu M. Taken together, the results suggest that febuxostat increases rosuvastatin exposure by inhibiting its BCRP-mediated efflux in the small intestine. Febuxostat may, therefore, serve as a useful index inhibitor of BCRP in drug-drug interaction studies in humans. Moreover, concomitant use of febuxostat may increase the exposure to BCRP substrate drugs and, thus, the risk of dose-dependent adverse effects.Peer reviewe
    corecore