3,156 research outputs found

    Characterization of All-Chromium Tunnel Junctions and Single Electron Tunneling Devices Fabricated by Direct-Writing Multilayer Technique

    Full text link
    We report about the fabrication and analysis of the properties of Cr/CrO_x/Cr tunnel junctions and SET transistors, prepared by different variants of direct-writing multilayer technique. In all cases, the CrO_x tunnel barriers were formed in air under ambient conditions. From the experiments on single junctions, values for the effective barrier height and thickness were derived. For the Cr/CrO_x/Cr SET transistors we achieved minimal junction areas of 17 x 60 nm^2 using a scanning transmission electron microscope for the e-beam exposure on Si_3N_4 membrane substrate. We discuss the electrical performance of the transistor samples as well as their noise behavior.Comment: 19 pages, 9 figure

    Cooper pair cotunneling in single charge transistors with dissipative electromagnetic environment

    Full text link
    We observed current-voltage characteristics of superconducting single charge transistors with on-chip resistors of R about R_Q = h/4e^2 = 6.45 kOhm, which are explained in terms of Cooper-pair cotunneling. Both the effective strength of Josephson coupling and the cotunneling current are modulated by the gate-induced charge on the transistor island. For increasing values of the resistance R we found the Cooper pair current at small transport voltages to be dramatically suppressed.Comment: 4 pages and 2 figure

    Primordial Black Hole Formation during First-Order Phase Transitions

    Get PDF
    Primordial black holes (PBHs) may form in the early universe when pre-existing adiabatic density fluctuations enter into the cosmological horizon and recollapse. It has been suggested that PBH formation may be facilitated when fluctuations enter into the horizon during a strongly first-order phase transition which proceeds in approximate equilibrium. We employ general-relativistic hydrodynamics numerical simulations in order to follow the collapse of density fluctuations during first-order phase transitions. We find that during late stages of the collapse fluctuations separate into two regimes, an inner part existing exclusively in the high-energy density phase with energy density ϵh\epsilon_{\rm h}, surrounded by an outer part which exists exclusively in the low-energy density phase with energy density ϵhL\epsilon_{\rm h}-L, where LL is the latent heat of the transition. We confirm that the fluctuation density threshold δϵ/ϵ\delta\epsilon /\epsilon required for the formation of PBHs during first-order transitions decreases with increasing LL and falls below that for PBH formation during ordinary radiation dominated epochs. Our results imply that, in case PBHs form at all in the early universe, their mass spectrum is likely dominated by the approximate horizon masses during epochs when the universe undergoes phase transitions.Comment: 8 pages, 4 figures, revtex style, submitted to PR

    Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes

    Get PDF
    The recent discovery of critical phenomena arising in gravitational collapse near the threshold of black hole formation is used to estimate the initial mass function of primordial black holes (PBHs). It is argued that the universal scaling relation between black hole mass and initial perturbation found for a variety of collapsing space-times also applies to PBH formation, indicating the possibility of the formation of PBHs with masses much smaller than one horizon mass. Owing to the natural fine-tuning of initial conditions by the exponential decline of the probability distribution for primordial density fluctuations, sub-horizon mass PBHs are expected to form at all epochs. This result suggests that the constraints on the primordial fluctuation spectrum based on the abundance of PBHs at different mass scales may have to be revisited.Comment: 4 pages, uses revtex, also available at http://bigwhirl.uchicago.edu/jcn/pub_pbh.html . To appear in Phys. Rev. Let

    On the small-scale stability of thermonuclear flames in Type Ia supernovae

    Get PDF
    We present a numerical model which allows us to investigate thermonuclear flames in Type Ia supernova explosions. The model is based on a finite-volume explicit hydrodynamics solver employing PPM. Using the level-set technique combined with in-cell reconstruction and flux-splitting schemes we are able to describe the flame in the discontinuity approximation. We apply our implementation to flame propagation in Chandrasekhar-mass Type Ia supernova models. In particular we concentrate on intermediate scales between the flame width and the Gibson-scale, where the burning front is subject to the Landau-Darrieus instability. We are able to reproduce the theoretical prediction on the growth rates of perturbations in the linear regime and observe the stabilization of the flame in a cellular shape. The increase of the mean burning velocity due to the enlarged flame surface is measured. Results of our simulation are in agreement with semianalytical studies.Comment: 9 pages, 7 figures, Uses AASTEX, emulateapj5.sty, onecolfloat.sty. Replaced with accepted version (ApJ), Figures 1 and 3 are ne

    Fauna edáfica como indicadora de contaminação do solo.

    Get PDF
    Recentemente, o solo tem se tornado foco de preocupação devido à gradativa contaminação de ambientes terrestres e aquáticos, decorrente do progresso e avanços sócio-econômicos no país. Diante dessa realidade, a demanda por atividades antrópicas menos agressivas ao ambiente é cada vez maior. Os possíveis impactos ambientais, portanto, devem ser monitorados, controlados e remediados, a fim de evitar problemas irreversíveis ao meio ambiente e à sociedade. A ecotoxicologia estuda os efeitos dos poluentes sobre os organismos e a interação destes com o habitat. Para se avaliar o impacto de uma substância no solo, ensaios ecotoxicológicos com metodologia padronizada internacionalmente podem ser realizados com invertebrados edáficos, tais como as minhocas, enquitreídeos e colêmbolos, por serem importantes na decomposição da matéria orgânica do solo. Esses ensaios de laboratório, no entanto, precisam ser adaptados, pois a metodologia padrão se baseia em espécies e condições de clima temperado que não condizem com a realidade do Brasil. Adaptações aos ensaios de efeito agudo (mortalidade), efeito crônico (reprodução) e de fuga (comportamento) têm sido estudados por vários grupos e os resultados têm sido positivos com relação ao uso do substrato com o pó da fibra da casca do côco e utilização de temperaturas maiores que 20ºC. Algumas espécies encontradas no Brasil também têm sido testadas, algumas delas apresentando resultados promissores, outras, com limitações. De modo geral, os métodos para avaliação da contaminação do solo em laboratório têm apresentado avanços, entretanto, mais estudos se fazem necessários para o estabelecimento de espécies nativas recomendadas para cada tipo de ensaio.Resumo expandido

    Dynamical Symmetry Breaking in Fractal Space

    Get PDF
    We formulate field theories in fractal space and show the phase diagrams of the coupling versus the fractal dimension for the dynamical symmetry breaking. We first consider the 4-dimensional Gross-Neveu (GN) model in the (4-d)-dimensional randomized Cantor space where the fermions are restricted to a fractal space by the high potential barrier of Cantor fractal shape. By the statistical treatment of this potential, we obtain an effective action depending on the fractal dimension. Solving the 1/N leading Schwinger-Dyson (SD) equation, we get the phase diagram of dynamical symmetry breaking with a critical line similar to that of the d-dimensional (2<d<4) GN model except for the system-size dependence. We also consider QED4 with only the fermions formally compactified to d dimensions. Solving the ladder SD equation, we obtain the phase diagram of dynamical chiral symmetry breaking with a linear critical line, which is consistent with the known results for d=4 (the Maskawa-Nakajima case) and d=2 (the case with the external magnetic field).Comment: 28 pages, 5 figures, LaTeX with epsf macr

    Critical collapse and the primordial black hole initial mass function

    Get PDF
    It has normally been assumed that primordial black holes (PBHs) always form with mass approximately equal to the mass contained within the horizon at that time. Recent work studying the application of critical phenomena in gravitational collapse to PBH formation has shown that in fact, at a fixed time, PBHs with a range of masses are formed. When calculating the PBH initial mass function it is usually assumed that all PBHs form at the same horizon mass. It is not clear, however, that it is consistent to consider the spread in the mass of PBHs formed at a single horizon mass, whilst neglecting the range of horizon masses at which PBHs can form. We use the excursion set formalism to compute the PBH initial mass function, allowing for PBH formation at a range of horizon masses, for two forms of the density perturbation spectrum. First we examine power-law spectra with n>1n>1, where PBHs form on small scales. We find that, in the limit where the number of PBHs formed is small enough to satisfy the observational constraints on their initial abundance, the mass function approaches that found by Niemeyer and Jedamzik under the assumption that all PBHs form at a single horizon mass. Second, we consider a flat perturbation spectrum with a spike at a scale corresponding to horizon mass 0.5M\sim 0.5 M_{\odot}, and compare the resulting PBH mass function with that of the MACHOs (MAssive Compact Halo Objects) detected by microlensing observations. The predicted mass spectrum appears significantly wider than the steeply-falling spectrum found observationally.Comment: 8 pages RevTeX file with ten figures incorporated (uses RevTeX and epsf). Minor changes to dicussion onl

    Achieving equity through 'gender autonomy': the challenges for VET policy and practice

    Get PDF
    This paper is based on research carried out in an EU Fifth Framework project on 'Gender and Qualification'. The research partners from five European countries investigated the impact of gender segregation in European labour markets on vocational education and training, with particular regard to competences and qualifications. The research explored the part played by gender in the vocational education and training experiences of (i) young adults entering specific occupations in child care, electrical engineering and food preparation/service (ii) adults changing occupations

    Discretized Diffusion Processes

    Get PDF
    We study the properties of the ``Rigid Laplacian'' operator, that is we consider solutions of the Laplacian equation in the presence of fixed truncation errors. The dynamics of convergence to the correct analytical solution displays the presence of a metastable set of numerical solutions, whose presence can be related to granularity. We provide some scaling analysis in order to determine the value of the exponents characterizing the process. We believe that this prototype model is also suitable to provide an explanation of the widespread presence of power-law in social and economic system where information and decision diffuse, with errors and delay from agent to agent.Comment: 4 pages 5 figure, to be published in PR
    corecore