3,796 research outputs found

    Aluminum Single Electron Transistors with Islands Isolated from a Substrate

    Full text link
    The low-frequency noise figures of single-electron transistors (electrometers) of traditional planar and new stacked geometry were compared. We observed a correlation between the charge noise and the contact area of the transistor island with a dielectric substrate in the set of Al transistors located on the same chip and having almost similar electric parameters. We have found that the smaller the contact area the lower the noise level of the transistor. The lowest noise value 8*10E-6 e/sqrt(Hz) at f = 10 Hz. has been measured in a stacked transistor with an island which was completely isolated from a substrate. Our measurements have unambiguously indicated that the dominant source of the background charge fluctuations is associated with a dielectric substrateComment: Review paper, latex, 10 pages, 7 figures, to be publ. in JLTP, 2000; Proceeding of "Electron Transport in Mesoscopic Systems", August 12-15, 1999 Geteborg, Sweden, http://fy.chalmers.se/meso_satellite/index.html See also LT22 manuscript: http://lt22.hut.fi/cgi/view?id=S1113

    Metallic single-electron transistor without traditional tunnel barriers

    Full text link
    We report on a new type of single-electron transistor (SET) comprising two highly resistive Cr thin-film strips (~ 1um long) connecting a 1 um-long Al island to two Al outer electrodes. These resistors replace small-area oxide tunnel junctions of traditional SETs. Our transistor with a total asymptotic resistance of 110 kOhm showed a very sharp Coulomb blockade and reproducible, deep and strictly e-periodic gate modulation in wide ranges of bias currents I and gate voltages V_g. In the Coulomb blockade region (|V| < 0.5 mV), we observed a strong suppression of the cotunneling current allowing appreciable modulation curves V-V_g to be measured at currents I as low as 100 fA. The noise figure of our SET was found to be similar to that of typical Al/AlOx/Al single-electron transistors.Comment: 5 pages incl. 4 fig

    Noise in Al single electron transistors of stacked design

    Full text link
    We have fabricated and examined several Al single electron transistors whose small islands were positioned on top of a counter electrode and hence did not come into contact with a dielectric substrate. The equivalent charge noise figure of all transistors turned out to be surprisingly low, (2.5 - 7)*10E-5 e/sqrt(Hz) at f = 10 Hz. Although the lowest detected noise originates mostly from fluctuations of background charge, the noise contribution of the tunnel junction conductances was, on occasion, found to be dominant.Comment: 4 pages of text with 1 table and 5 figure

    Low-cost point-focus solar concentrator, phase 1

    Get PDF
    The results of the preliminary design study for the low cost point focus solar concentrator (LCPFSC) development program are presented. A summary description of the preliminary design is given. The design philosophy used to achieve a cost effective design for mass production is described. The concentrator meets all design requirements specified and is based on practical design solutions in every possible way

    Phase-charge duality in Josephson junction circuits: Role of inertia and effect of microwave irradiation

    Full text link
    We investigate the physics of coherent quantum phase slips in two distinct circuits containing small Josephson junctions: (i) a single junction embedded in an inductive environment and (ii) a long chain of junctions. Starting from the standard Josephson Hamiltonian, the single junction circuit can be analyzed using quasi-classical methods; we formulate the conditions under which the resulting quasi-charge dynamics is exactly dual to the usual phase dynamics associated with Josephson tunneling. For the chain we use the fact that its collective behavior can be characterized by one variable: the number mm of quantum phase slips present on it. We conclude that the dynamics of the conjugate quasi-charge is again exactly dual to the standard phase dynamics of a single Josephson junction. In both cases we elucidate the role of the inductance, essential to obtain exact duality. These conclusions have profound consequences for the behavior of single junctions and chains under microwave irradiation. Since both systems are governed by a model exactly dual to the standard resistively and capacitively shunted junction model, we expect the appearance of current-Shapiro steps. We numerically calculate the corresponding current-voltage characteristics in a wide range of parameters. Our results are of interest in view of a metrological current standard

    Signatures of Planck-scale interactions in the cosmic microwave background?

    Full text link
    Based on a rather general low-energy effective action (interacting quantum fields in classical curved space-times), we calculate potential signatures of new physics (such as quantum gravity) at ultra-high energies (presumably the Planck scale) in the anisotropies of the cosmic microwave background. These Planck-scale interactions create non-Gaussian contributions, where special emphasis is laid on the three-point function as the most promising observable, which also allows the discrimination between models violating and those obeying Lorentz invariance. PACS: 98.80.Cq, 04.62.+v, 98.70.Vc, 98.80.Qc.Comment: 4 page

    Dynamical evolution of the Universe in the quark-hadron phase transition and possible nugget formation

    Get PDF
    We study the dynamics of first-order phase transition in the early Universe when it was 1050μs10-50 \mu s old with quarks and gluons condensing into hadrons. We look at how the Universe evolved through the phase transition in small as well as large super cooling scenario, specifically exploring the formation of quark nuggets and their possible survival. The nucleation of the hadron phase introduces new distance scales in the Universe, which we estimate along with the hadron fraction, temperature, nucleation time etc. It is of interest to explore whether there is a relic signature of this transition in the form of quark nuggets which might be identified with the recently observed dark objects in our galactic halo and account for the Dark Matter in the Universe at present.Comment: LaTeX file with four postscript figure

    Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms

    Full text link
    We investigate the dynamics of neutral atoms in a 2D optical lattice which traps two distinct internal states of the atoms in different columns. Two Raman lasers are used to coherently transfer atoms from one internal state to the other, thereby causing hopping between the different columns. By adjusting the laser parameters appropriately we can induce a non vanishing phase of particles moving along a closed path on the lattice. This phase is proportional to the enclosed area and we thus simulate a magnetic flux through the lattice. This setup is described by a Hamiltonian identical to the one for electrons on a lattice subject to a magnetic field and thus allows us to study this equivalent situation under very well defined controllable conditions. We consider the limiting case of huge magnetic fields -- which is not experimentally accessible for electrons in metals -- where a fractal band structure, the Hofstadter butterfly, characterizes the system.Comment: 6 pages, RevTe
    corecore