338 research outputs found

    The Massive Wolf-Rayet Binary SMC WR7

    Get PDF
    We present a study of optical spectra of the Wolf--Rayet star AzV 336a (= SMC WR7) in the Small Magellanic Cloud. Our study is based on data obtained at several Observatories between 1988 and 2001. We find SMC WR7 to be a double lined WN+O6 spectroscopic binary with an orbital period of 19.56 days. The radial velocities of the He absorption lines of the O6 component and the strong He{\sc ii} emission at λ\lambda4686\AA of the WN component describe antiphased orbital motions. However, they show a small phase shift of \sim 1 day. We discuss possible explanations for this phase shift. The amplitude of the radial velocity variations of He {\sc ii} emission is twice that of the absorption lines. The binary components have fairly high minimum masses, \sim 18 \modot and 34 \modot for the WN and O6 components, respectively.Comment: Accepted by MNRA

    Optical Spectroscopy of X-Mega targets in the Carina Nebula - VI. FO 15: a new O-Type double-lined eclipsing binary

    Full text link
    We report the discovery of a new O-type double-lined spectroscopic binary with a short orbital period of 1.4 days. We find the primary component of this binary, FO 15, to have an approximate spectral type O5.5Vz, i.e. a Zero-Age-Main-Sequence star. The secondary appears to be of spectral type O9.5V. We have performed a numerical model fit to the public ASAS photometry, which shows that FO 15 is also an eclipsing binary. We find an orbital inclination of ~ 80 deg. From a simultaneous light-curve and radial velocity solution we find the masses and radii of the two components to be 30 +/- 1 and 16 +/- 1 solar masses and 7.5 +/- 0.5 and 5.3 +/- 0.5 solar radii. These radii, and hence also the luminosities, are smaller than those of normal O-type stars, but similar to recently born ZAMS O-type stars. The absolute magnitudes derived from our analysis locate FO 15 at the same distance as Eta Carinae. From Chandra and XMM X-ray images we also find that there are two close X-ray sources, one coincident with FO 15 and another one without optical counterpart. This latter seems to be a highly variable source, presumably due to a pre-main-sequence stellar neighbour of FO 15.Comment: 11 pages, 9 figures, 3 tables. Accepted for publication in MNRAS. Higher resolution version available at http://lilen.fcaglp.unlp.edu.ar/papers2006.htm

    The massive Wolf-Rayet Binary LSS1964 (=WR29), II: the V light curve

    Get PDF
    Context. WR 29 is a known WN7h+O double-lined binary system with a rather short period (3.164 days). Aims. We search for light variations to determine the inclination of the system and thus the absolute masses of both components. Methods. We observed photometrically the field of WR 29 between December, 2002, and February, 2006. Results. We find that the V light of WR 29 varies in phase with the spectroscopic period of 3.16412 days, presenting two minima corresponding to the conjunctions of the binary components. Numerical models fitted to the light curve indicate an orbital inclination of about 44◦, and masses of 53 M and 42 M for the O- and WN-type components, respectively.Fil: Gamen, Roberto Claudio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Fernandez Lajus, Eduardo Eusebio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Niemela, Virpi Sinikka. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Barba, Rodolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentin

    Discovery of a [WO] central star in the planetary nebula Th 2-A

    Full text link
    % context About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996) % aims We have started an observational program aiming to increase the number of PN central stars with spectral classification. % methods By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. % results As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. % conclusions We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula.Comment: 3 pages and 2 figures. Paper recommended for publication in A&

    A Search for Wolf-Rayet Stars in the Small Magellanic Cloud

    Get PDF
    We conducted an extensive search for Wolf-Rayet stars (W-Rs) in the SMC, using the same interference filter imaging techniques that have proved successful in finding W-Rs in more distant members of the Local Group. Photometry of some 1.6 million stellar images resulted in some 20 good candidates, which we then examined spectroscopically. Two of these indeed proved to be newly found W-Rs, bringing the total known in the SMC from 9 to 11. Other finds included previously unknown Of-type stars (one as early as O5f?p)),the recovery of the Luminous Blue Variable S18, and the discovery of a previously unknown SMC symbiotic star. More important, however, is the fact that there does not exist a significant number of W-Rs waiting to be discovered in the SMC. The number of W-Rs in the SMC is a factor of 3 lower than in the LMC (per unit luminosity), and we argue this is the result of the SMC's low metallicity on the evolution of the most massive stars.Comment: Accepted by Astrophysical Journal. Postscript version available via ftp.lowell.edu/pub/massey/smcwr.ps.gz Revised version contains slightly revised spectral types for the Of stars but is otherwise unchange

    New Constraints on the Origin of the Short-Term Cyclical Variability of the Wolf-Rayet Star WR 46

    Full text link
    The Wolf-Rayet star WR 46 is known to exhibit a very complex variability pattern on relatively short time scales of a few hours. Periodic but intermittent radial velocity shifts of optical lines as well as multiple photometric periods have been found in the past. Non-radial pulsations, rapid rotational modulation or the presence of a putative low-mass companion have been proposed to explain the short-term behaviour. In an effort to unveil its true nature, we observed WR 46 with FUSE (Far Ultraviolet Spectroscopic Explorer) over several short-term variability cycles. We found significant variations on a time scale of ~8 hours in the far-ultraviolet (FUV) continuum, in the blue edge of the absorption trough of the OVI {\lambda}{\lambda}1032, 1038 doublet P Cygni profile and in the SVI {\lambda}{\lambda}933, 944 P Cygni absorption profile. We complemented these observations with X-ray and UV light-curves and an X-ray spectrum from archival XMM-Newton (X-ray Multi-Mirror Mission - Newton Space Telescope) data. The X-ray and UV light-curves show variations on a time scale similar to the variability found in the FUV. We discuss our results in the context of the different scenarios suggested to explain the short-term variability of this object and reiterate that non-radial pulsations is the most likely to occur.Comment: 36 pages, 11 figures. Accepted for publication in Ap

    Large scale dynamics in turbulent Rayleigh-Benard convection

    Get PDF
    The progress in our understanding of several aspects of turbulent Rayleigh-Benard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the large-scale convection-roll are addressed as well. The review ends with a list of challenges for future research on the turbulent Rayleigh-Benard system.Comment: Review article, 34 pages, 13 figures, Rev. Mod. Phys. 81, in press (2009
    corecore