284 research outputs found

    A Model for Assessing the Visual Resources of River Basins as an Aid to Making Landuse Planning Decisions

    Get PDF
    The visual quality of a river basin and its associated properties can be identified, evaluated and integrated into the landscape planning process. The model developed provides a quantitative methodology for determining visual quality on the basis of available Geographic Information System factors. These factors are utilized to develop the preference attributes, COLOR, FORM, TEXTURE and LINE, which are associated with the assessment of visual quality. The preference attributes are then combined through a decision making process into a continuum of DISTINCTIVE, GOOD, AVERAGE and MINIMAL visual quality and is expressed digitally in map format. By providing visual quality information in a digital format it can be treated as a discrete component of the planning process similar to physical, cultural and economic attributes

    A commercialized dietary supplement alleviates joint pain in community adults: a double-blind, placebo-controlled community trial

    Get PDF
    BACKGROUND: The purpose of this study was to assess the effect of 8-weeks ingestion of a commercialized joint pain dietary supplement (InstaflexTM Joint Support, Direct Digital, Charlotte, NC) compared to placebo on joint pain, stiffness, and function in adults with self-reported joint pain. InstaflexTM is a joint pain supplement containing glucosamine sulfate, methylsufonlylmethane (MSM), white willow bark extract (15% salicin), ginger root concentrate, boswella serrata extract (65% boswellic acid), turmeric root extract, cayenne, and hyaluronic acid. METHODS: Subjects included 100 men and women, ages 50-75 years, with a history (>3 months) of joint pain, and were randomized to Instaflex™ or placebo (3 colored gel capsules per day for 8 weeks, double-blind administration). Subjects agreed to avoid the use of non-steroidal anti-inflammatory drugs (NSAID) and all other medications and supplements targeted for joint pain. Primary outcome measures were obtained pre- and post-study and included joint pain severity, stiffness, and function (Western Ontario and McMaster Universities [WOMAC]), and secondary outcome measures included health-related quality of life (Short Form 36 or SF-36), systemic inflammation (serum C-reactive protein and 9 plasma cytokines), and physical function (6-minute walk test). Joint pain symptom severity was assessed bi-weekly using a 12-point Likert visual scale (12-VS). RESULTS: Joint pain severity was significantly reduced in Instaflex™ compared to placebo (8-week WOMAC, ↓37% versus ↓16%, respectively, interaction effect P = 0.025), with group differences using the 12-VS emerging by week 4 of the study (interaction effect, P = 0.0125). Improvements in ability to perform daily activities and stiffness scores in Instaflex™ compared to placebo were most evident for the 74% of subjects reporting knee pain (8-week WOMAC function score, ↓39% versus ↓14%, respectively, interaction effect P = 0.027; stiffness score, ↓30% versus ↓12%, respectively, interaction effect P = 0.081). Patterns of change in SF-36, systemic inflammation biomarkers, and the 6-minute walk test did not differ significantly between groups during the 8-week study CONCLUSIONS: Results from this randomized, double blind, placebo-controlled community trial support the use of the Instaflex™ dietary supplement in alleviating joint pain severity in middle-aged and older adults, with mitigation of difficulty performing daily activities most apparent in subjects with knee pain. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0195650

    Muscle Glycogen Depletion Following 75-km of Cycling Is Not Linked to Increased Muscle IL-6, IL-8, and MCP-1 mRNA Expression and Protein Content

    Get PDF
    The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N=20) participated in a 75-km cycling time trial (168±26.0 min), with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2±17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5±2.8-, 45.3±7.8-, and 8.25±1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5±14.1%, 347±68.1%, and 148±21.3%, respectively (all, P<0.001). Serum myoglobin and cortisol increased 32.1±3.3 to 242±48.3 mg/mL, and 295±27.6 to 784±63.5 nmol/L, respectively (both P<0.001). Plasma IL-6, IL-8, and MCP-1 increased 0.42±0.07 to 18.5±3.8, 4.07±0.37 to 17.0±1.8, and 96.5±3.7 to 240±21.6 pg/mL, respectively (all P<0.001). Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r=0.462, P=0.040), with change in myoglobin related to plasma IL-8 (r=0.582, P=0.007) and plasma MCP-1 (r=0.457, P=0.043), and muscle MCP-1 protein (r=0.588, P=0.017); cortisol was related to plasma IL-8 (r=0.613, P=0.004), muscle IL-8 protein (r=0.681, P=0.004), and plasma MCP-1 (r=0.442, P=0.050). In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1

    Original Research Reducing Diet and/or Exercise Training Decreases the Lipid and Lipoprotein Risk Factors of Moderately Obese Women

    Get PDF
    Objective: This study was designed to measure the influence of diet, exercise or both on serum lipids and lipoproteins in obese women. Methods: Obese subjects were randomly divided into one of four groups: diet alone (1,200 -1,300 kcal/day, NCEP, Step I), exercise alone (five 45 minute sessions per week at 78.4 Ϯ 0.5% maximum heart rate), exercise and diet, and controls. Maximal aerobic power, body composition, diet, serum lipids and lipoproteins were measured in all subjects at baseline and after a 12-week intervention period. Subjects included 91 moderately obese (45.6 Ϯ 1.1 y, body mass index 33.1 Ϯ 0.6 kg/m 2 ) and 30 nonobese (43.2 Ϯ 2.3 y, body mass index 21.4 Ϯ 0.34 kg/m 2 ) women who were recruited from the surrounding community. Independent t tests were used to compare obese and nonobese subjects at baseline. The 12-week intervention data from the obese groups were analyzed using a 4 ϫ 2 repeated measures ANOVA design. Results: Cross-sectional comparisons at baseline showed obese subjects had significantly higher total cholesterol, triacylglycerol, total cholesterol/HDL-C and LDL-C values and lower HDL-C values. Prospective results showed that subjects in diet and exercise and diet lost 7.8 Ϯ 0.7 and 8.1 Ϯ 0.6 kg body mass, with no significant change for exercise relative to control. Serum cholesterol and triacylglycerol improved in both diet and in exercise and diet after 12 weeks of intervention, and was most strongly related to weight loss. Conclusion: Weight loss is the most effective means of reducing lipid and lipoprotein risk factors in obese women

    The Effects of a Multiflavonoid Supplement on Vascular and Hemodynamic Parameters following Acute Exercise

    Get PDF
    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index

    Bananas as an Energy Source during Exercise: A Metabolomics Approach

    Get PDF
    This study compared the acute effect of ingesting bananas (BAN) versus a 6% carbohydrate drink (CHO) on 75-km cycling performance and post-exercise inflammation, oxidative stress, and innate immune function using traditional and metabolomics-based profiling. Trained cyclists (N = 14) completed two 75-km cycling time trials (randomized, crossover) while ingesting BAN or CHO (0.2 g/kg carbohydrate every 15 min). Pre-, post-, and 1-h-post-exercise blood samples were analyzed for glucose, granulocyte (GR) and monocyte (MO) phagocytosis (PHAG) and oxidative burst activity, nine cytokines, F2-isoprostanes, ferric reducing ability of plasma (FRAP), and metabolic profiles using gas chromatography-mass spectrometry. Blood glucose levels and performance did not differ between BAN and CHO (2.41±0.22, 2.36±0.19 h, P = 0.258). F2-isoprostanes, FRAP, IL-10, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG increased with exercise, with no trial differences except for higher levels during BAN for IL-10, IL-8, and FRAP (interaction effects, P = 0.003, 0.004, and 0.012). Of 103 metabolites detected, 56 had exercise time effects, and only one (dopamine) had a pattern of change that differed between BAN and CHO. Plots from the PLS-DA model visualized a distinct separation in global metabolic scores between time points [R2Y(cum) = 0.869, Q2(cum) = 0.766]. Of the top 15 metabolites, five were related to liver glutathione production, eight to carbohydrate, lipid, and amino acid metabolism, and two were tricarboxylic acid cycle intermediates. BAN and CHO ingestion during 75-km cycling resulted in similar performance, blood glucose, inflammation, oxidative stress, and innate immune levels. Aside from higher dopamine in BAN, shifts in metabolites following BAN and CHO 75-km cycling time trials indicated a similar pattern of heightened production of glutathione and utilization of fuel substrates in several pathways

    Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome?

    Get PDF
    Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer’s disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis

    Original Research Oral Quercetin Supplementation and Blood Oxidative Capacity in Response to Ultramarathon Competition

    Get PDF
    Previous research indicates that ultramarathon exercise can result in blood oxidative stress. The purpose of this investigation was to examine the efficacy of oral supplementation with quercetin, a naturally occurring compound with known antioxidant properties, as a potential countermeasure against blood oxidative stress during an ultramarathon competition. In double-blind fashion, 63 participants received either oral quercetin (250 mg, 4×/day; 1,000 mg/day total) or quercetin-free supplements 3 weeks before and during the 160-km Western States Endurance Run. Blood drawn before and immediately after (quercetin finishers n = 18, quercetin-free finishers n = 21) the event was analyzed for changes in blood redox status and oxidative damage. Results show that quercetin supplementation did not affect race performance. In response to the ultramarathon challenge, aqueous-phase antioxidant capacity (ferric-reducing ability of plasma) was similarly elevated in athletes in both quercetin and quercetin-free treatments and likely reflects significant increases in plasma urate levels. Alternatively, trolox-equivalent antioxidant capacity was not altered by exercise or quercetin. Accordingly, neither F2-isoprostances nor protein carbonyls were influenced by either exercise or quercetin supplementation. In the absence of postrace blood oxidative damage, these findings suggest that oral quercetin supplementation does not alter blood plasma lipid or aqueous-phase antioxidant capacity or oxidative damage during an ultramarathon challenge

    Blood Leukocyte mRNA Expression for IL-10, IL-1Ra, and IL-8, but Not IL-6, Increases After Exercise

    Get PDF
    The primary purpose of this project was to study exercise-induced leukocyte cytokine mRNA expression. Changes in plasma cytokine levels and blood leukocyte mRNA expression for interleukin-6 (IL-6), IL-8, IL- 10, and IL-1 receptor antagonist (IL-1Ra) were measured in 12 athletes following 2 h of intensive cycling (64% Wattsmax) while ingesting a carbohydrate or placebo beverage (randomized and double blinded). Blood samples were collected 30 min preexercise and immediately and 1 h postexercise. Carbohydate compared with placebo ingestion attenuated exercise-induced changes in plasma cortisol (8.8% vs. 62%, respectively), epinephrine (–9.2% vs. 138%), IL-6 (10-fold vs. 40-fold), IL-10 (8.9-fold vs. 26-fold, and IL-1Ra (2.1-fold vs. 5.6-fold). Significant time effects were measured for blood leukocyte IL-8 (2.4-fold increase 1 h postexercise), IL-10 (2.7-fold increase), IL-1Ra (2.2-fold increase), and IL-6 (0.8-fold decrease) mRNA content, with no significant differences between Cho and Pla test conditions. In summary, gene expression for IL-8, IL-10, and IL-1Ra, but not IL-6, is increased in blood leukocytes taken from athletes following 2 h of intensive cycling and is not influenced by carbohydrate compared with placebo ingestion. mRNA expression was high enough to indicate a substantial contribution of blood leukocytes to plasma levels of IL-8, IL-10, and IL-1Ra during prolonged exercise
    corecore