9 research outputs found

    A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations

    Get PDF
    The accuracy of two direct coupled two-step CFD/CAA methods is discussed. For the flow field either a finite-volume (FV) method for the solution of the Navier–Stokes equations or a lattice Boltzmann (LB) method is coupled to a discontinuous Galerkin (DG) method for the solution of the acoustic perturbation equations. The coupling takes advantage of a joint Cartesian mesh allowing for the exchange of the acoustic sources without MPI communication. An immersed boundary treatment of the acoustic scattering from solid bodies by a novel solid wall formulation is implemented and validated in the DG method. Results for the case of a spinning vortex pair and the low Reynolds number unsteady flow around a circular cylinder show that a solution with comparable accuracy is obtained for the two direct-hybrid methods when using identical mesh resolution

    Numerical analysis of Chevron nozzles

    No full text

    A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations

    No full text
    The accuracy of two direct coupled two-step CFD/CAA methods is discussed. For the flow field either a finite-volume (FV) method for the solution of the Navier–Stokes equations or a lattice Boltzmann (LB) method is coupled to a discontinuous Galerkin (DG) method for the solution of the acoustic perturbation equations. The coupling takes advantage of a joint Cartesian mesh allowing for the exchange of the acoustic sources without MPI communication. An immersed boundary treatment of the acoustic scattering from solid bodies by a novel solid wall formulation is implemented and validated in the DG method. Results for the case of a spinning vortex pair and the low Reynolds number unsteady flow around a circular cylinder show that a solution with comparable accuracy is obtained for the two direct-hybrid methods when using identical mesh resolution

    Dynamic load balancing for direct-coupled multiphysics simulations

    No full text
    High parallel efficiency for large-scale coupled multiphysics simulations requires the computational load to be evenly distributed among all compute cores. For complex applications and massively parallel computations, even minor load imbalances can have a severe impact on the overall performance and resource usage. Exemplarily for a volume-coupled multiphysics simulation, a direct-hybrid method is considered, in which a CFD and a CAA simulation are performed concurrently on the same parallel subdomains. For differing load compositions on each subdomain, accurate computational weights for CFD and CAA cells must be known to determine an efficient domain decomposition. Therefore, a dynamic load balancing scheme is presented, which allows to increase the efficiency of complex coupled simulations with non-trivial domain decompositions. A fully-coupled three-dimensional jet simulation with approximately 300 million degrees of freedom demonstrates the effectiveness of the approach to reduce load imbalances. A detailed performance analysis substantiates the necessity of dynamic load balancing. Furthermore, the results of a strong scaling experiment show the benefit of load balancing to be proportional to the degree of parallelism. In addition, it is shown that the approach allows to attenuate imbalances also for parallel computations on heterogeneous computing hardware. The acoustic field of a chevron nozzle will also be discussed
    corecore