36,324 research outputs found

    A simple formula for pooling knowledge about a quantum system

    Full text link
    When various observers obtain information in an independent fashion about a classical system, there is a simple rule which allows them to pool their knowledge, and this requires only the states-of-knowledge of the respective observers. Here we derive an equivalent quantum formula. While its realm of applicability is necessarily more limited, it does apply to a large class of measurements, and we show explicitly for a single qubit that it satisfies the intuitive notions of what it means to pool knowledge about a quantum system. This analysis also provides a physical interpretation for the trace of the product of two density matrices.Comment: 5 pages, Revtex

    Quantum-dot-spin single-photon interface

    Full text link
    Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosecond time resolution projects the quantum dot spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of resonantly scattered photons reveals information about electron spin dynamics. High-fidelity fast spin-state initialization heralded by a single photon enables the realization of quantum information processing tasks such as non-deterministic distant spin entanglement. Given that we could suppress the measurement back-action to well below the natural spin-flip rate, realization of a quantum non-demolition measurement of a single spin could be achieved by increasing the fluorescence collection efficiency by a factor exceeding 20 using a photonic nanostructure

    Entanglement Witnesses from Single-Particle Interference

    Full text link
    We describe a general method of realizing entanglement witnesses in terms of the interference pattern of a single quantum probe. After outlining the principle, we discuss specific realizations both with electrons in mesoscopic Aharonov-Bohm rings and with photons in standard Young's double-slit or coherent-backscattering interferometers.Comment: 5 pages, 3 figures, epl2, uses pstricks.st

    Charge qubits and limitations of electrostatic quantum gates

    Full text link
    We investigate the characteristics of purely electrostatic interactions with external gates in constructing full single qubit manipulations. The quantum bit is naturally encoded in the spatial wave function of the electron system. Single-electron{transistor arrays based on quantum dots or insulating interfaces typically allow for electrostatic controls where the inter-island tunneling is considered constant, e.g. determined by the thickness of an insulating layer. A representative array of 3x3 quantum dots with two mobile electrons is analyzed using a Hubbard Hamiltonian and a capacitance matrix formalism. Our study shows that it is easy to realize the first quantum gate for single qubit operations, but that a second quantum gate only comes at the cost of compromising the low-energy two-level system needed to encode the qubit. We use perturbative arguments and the Feshbach formalism to show that the compromising of the two-level system is a rather general feature for electrostatically interacting qubits and is not just related to the specific details of the system chosen. We show further that full implementation requires tunable tunneling or external magnetic fields.Comment: 7 pages, 5 figures, submitted to PR

    Spotlighting quantum critical points via quantum correlations at finite temperatures

    Full text link
    We extend the program initiated in [T. Werlang et al., Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest-neighbors and also study the behavior of entanglement and quantum discord for second nearest-neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.Comment: 11 pages, 12 figures, RevTex4-1; v2: published versio

    Generation of Werner states via collective decay of coherently driven atoms

    Get PDF
    We show deterministic generation of Werner states as a steady state of the collective decay dynamics of a pair of neutral atom coupled to a leaky cavity and strong coherent drive. We also show how the scheme can be extended to generate 2N2N-particle analogue of the bipartite Werner states.Comment: 4 pages, 1 figur

    Quantum discord and non-Markovianity of quantum dynamics

    Full text link
    The problem of recognizing (non-)Markovianity of a quantum dynamics is revisited through analyzing quantum correlations. We argue that instantaneously-vanishing quantum discord provides a necessary and sufficient condition for Markovianity of a quantum map. This is used to introduce a measure of non-Markovianity. This measure, however, requires demanding knowledge about the system and the environment. By using a quantum correlation monogamy property and an ancillary system, we propose a simplified measure with less requirements. Non-Markovianity is thereby decided by quantum state tomography of the system and the ancilla.Comment: 5 pages, 3 figure

    Cavity-mediated long-range interaction for fast multiqubit quantum logic operations

    Get PDF
    Interactions among qubits are essential for performing two-qubit quantum logic operations. However, nature gives us only nearest neighbor interactions in simple and controllable settings. Here we propose a strategy to induce interactions among two atomic entities that are not necessarily neighbors of each other through their common coupling with a cavity field. This facilitates fast multiqubit quantum logic operations through a set of two-qubit operations. The ideas presented here are applicable to various quantum computing proposals for atom based qubits such as, trapped ions, atoms trapped in optical cavities and optical lattices.Comment: 10 pages, 3 figure

    Coherent control of atomic spin currents in a double well

    Get PDF
    We propose an experimental feasible method for controlling the atomic currents of a two-component Bose-Einstein condensate in a double well by applying an external field to the atoms in one of the potential wells. We study the ground-state properties of the system and show that the directions of spin currents and net-particle tunneling can be manipulated by adiabatically varying the coupling strength between the atoms and the field. This system can be used for studying spin and tunneling phenomena across a wide range of interaction parameters. In addition, spin-squeezed states can be generated. It is useful for quantum information processing and quantum metrology.Comment: 6 pages, 7 figures, minor revisio

    Optimal estimation of one parameter quantum channels

    Full text link
    We explore the task of optimal quantum channel identification, and in particular the estimation of a general one parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.Comment: 23 pages, 4 figures. Published versio
    • …
    corecore