29,916 research outputs found

    Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex

    Full text link
    We investigate multipartite states in the Fenna-Matthews-Olson (FMO) pigment-protein complex of the green sulfur bacteria using a Lorentzian spectral density of the phonon reservoir fitted with typical parameter estimates of the species, P. aestuarii. The evolution of the entanglement measure of the excitonic W qubit states is evaluated in the picosecond time range, showing increased revivals in the non-Markovian regime. Similar trends are observed in the evolution dynamics of the Meyer-Wallach measure of the N-exciton multipartite state, with results showing that multipartite entanglement can last from 0.5 to 1 ps, between the Bchls of the FMO complex. The teleportation and quantum information splitting fidelities associated with the GHZ and W_A resource states of the excitonic qubit channels of the FMO complex show that revivals in fidelities increase with the degree of non-Markovian strength of the decoherent environment. Results indicate that quantum information processing tasks involving teleportation followed by the decodification process involving W_A states of the FMO complex, may play a critical role during coherent oscillations at physiological temperatures.Comment: 16 pages, new figs, typo

    Resources Required for Topological Quantum Factoring

    Full text link
    We consider a hypothetical topological quantum computer where the qubits are comprised of either Ising or Fibonacci anyons. For each case, we calculate the time and number of qubits (space) necessary to execute the most computationally expensive step of Shor's algorithm, modular exponentiation. For Ising anyons, we apply Bravyi's distillation method [S. Bravyi, Phys. Rev. A 73, 042313 (2006)] which combines topological and non-topological operations to allow for universal quantum computation. With reasonable restrictions on the physical parameters we find that factoring a 128 bit number requires approximately 10^3 Fibonacci anyons versus at least 3 x 10^9 Ising anyons. Other distillation algorithms could reduce the resources for Ising anyons substantially.Comment: 4+epsilon pages, 4 figure

    Fast quantum algorithm for numerical gradient estimation

    Full text link
    Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to version

    ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    Full text link
    The far-infrared emission from rich galaxy clusters is investigated. Maps have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow cluster Sersic 159-03. An infrared source coincident with the dominant cD galaxy is found. Some off-center sources are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy and Astrophysics

    Power filtration of CMB observational data

    Full text link
    We propose a power filter Gp for linear reconstruction of the CMB signal from observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonstrate how peak statistics and a cluster analysis can be used to estimate the probability of the presence of a CMB signal in observational records. The efficiency of the Gp filter is demonstrated on a toy model of an observational record consisting of a CMB signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern Physic

    Dynamical stability of entanglement between spin ensembles

    Full text link
    We study the dynamical stability of the entanglement between the two spin ensembles in the presence of an environment. For a comparative study, we consider the two cases: a single spin ensemble, and two ensembles linearly coupled to a bath, respectively. In both circumstances, we assume the validity of the Markovian approximation for the bath. We examine the robustness of the state by means of the growth of the linear entropy which gives a measure of the purity of the system. We find out macroscopic entangled states of two spin ensembles can stably exist in a common bath. This result may be very useful to generate and detect macroscopic entanglement in a common noisy environment and even a stable macroscopic memory.Comment: 4 pages, 1 figur

    Phenomenological memory-kernel master equations and time-dependent Markovian processes

    Get PDF
    Do phenomenological master equations with memory kernel always describe a non-Markovian quantum dynamics characterized by reverse flow of information? Is the integration over the past states of the system an unmistakable signature of non-Markovianity? We show by a counterexample that this is not always the case. We consider two commonly used phenomenological integro-differential master equations describing the dynamics of a spin 1/2 in a thermal bath. By using a recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that as far as the equations retain their physical sense, the key feature of non-Markovian behavior does not appear in the considered memory kernel master equations. Namely, there is no reverse flow of information from the environment to the open system. Therefore, the assumption that the integration over a memory kernel always leads to a non-Markovian dynamics turns out to be vulnerable to phenomenological approximations. Instead, the considered phenomenological equations are able to describe time-dependent and uni-directional information flow from the system to the reservoir associated to time-dependent Markovian processes.Comment: 5 pages, no figure

    Change of decoherence scenario and appearance of localization due to reservoir anharmonicity

    Full text link
    Although coupling to a super-Ohmic bosonic reservoir leads only to partial dephasing on short time scales, exponential decay of coherence appears in the Markovian limit (for long times) if anharmonicity of the reservoir is taken into account. This effect not only qualitatively changes the decoherence scenario but also leads to localization processes in which superpositions of spatially separated states dephase with a rate that depends on the distance between the localized states. As an example of the latter process, we study the decay of coherence of an electron state delocalized over two semiconductor quantum dots due to anharmonicity of phonon modes.Comment: 4 pages, 1 figure; moderate changes; auxiliary material added; to appear in Phys. Rev. Let

    Dirac-K\"ahler approach connected to quantum mechanics in Grassmann space

    Get PDF
    We compare the way one of us got spinors out of fields, which are a priori antisymmetric tensor fields, to the Dirac-K\"ahler rewriting. Since using our Grassmann formulation is simple it may be useful in describing the Dirac-K\"ahler formulation of spinors and in generalizing it to vector internal degrees of freedom and to charges. The ``cheat'' concerning the Lorentz transformations for spinors is the same in both cases and is put clearly forward in the Grassmann formulation. Also the generalizations are clearly pointed out. The discrete symmetries are discussed, in particular the appearance of two kinds of the time-reversal operators as well as the unavoidability of four families.Comment: 36 page

    Witness for initial system-environment correlations in open system dynamics

    Full text link
    We study the evolution of a general open quantum system when the system and its environment are initially correlated. We show that the trace distance between two states of the open system can increase above its initial value, and derive tight upper bounds for the growth of the distinguishability of open system states. This represents a generalization of the contraction property of quantum dynamical maps. The obtained inequalities can be interpreted in terms of the exchange of information between the system and the environment, and lead to a witness for system-environment correlations which can be determined through measurements on the open system alone.Comment: 4 pages, 1 figur
    corecore