35,456 research outputs found

    Entanglement and optimal strings of qubits for memory channels

    Get PDF
    We investigate the problem of enhancement of mutual information by encoding classical data into entangled input states of arbitrary length and show that while there is a threshold memory or correlation parameter beyond which entangled states outperform the separable states, resulting in a higher mutual information, this memory threshold increases toward unity as the length of the string increases. These observations imply that encoding classical data into entangled states may not enhance the classical capacity of quantum channels.Comment: 14 pages, 8 figures, latex, accepted for publication in Physical Review

    Entanglement versus mixedness for coupled qubits under a phase damping channel

    Full text link
    Quantification of entanglement against mixing is given for a system of coupled qubits under a phase damping channel. A family of pure initial joint states is defined, ranging from pure separable states to maximally entangled state. An ordering of entanglement measures is given for well defined initial state amount of entanglement.Comment: 9 pages, 2 figures. Replaced with final published versio

    Entropy reduction of quantum measurements

    Full text link
    It is observed that the entropy reduction (the information gain in the initial terminology) of an efficient (ideal or pure) quantum measurement coincides with the generalized quantum mutual information of a q-c channel mapping an a priori state to the corresponding posteriori probability distribution of the outcomes of the measurement. This observation makes it possible to define the entropy reduction for arbitrary a priori states (not only for states with finite von Neumann entropy) and to study its analytical properties by using general properties of the quantum mutual information. By using this approach one can show that the entropy reduction of an efficient quantum measurement is a nonnegative lower semicontinuous concave function on the set of all a priori states having continuous restrictions to subsets on which the von Neumann entropy is continuous. Monotonicity and subadditivity of the entropy reduction are also easily proved by this method. A simple continuity condition for the entropy reduction and for the mean posteriori entropy considered as functions of a pair (a priori state, measurement) is obtained. A characterization of an irreducible measurement (in the Ozawa sense) which is not efficient is considered in the Appendix.Comment: 21 pages, minor corrections have been mad

    Analysis of a convenient information bound for general quantum channels

    Full text link
    Open questions from Sarovar and Milburn (2006 J.Phys. A: Math. Gen. 39 8487) are answered. Sarovar and Milburn derived a convenient upper bound for the Fisher information of a one-parameter quantum channel. They showed that for quasi-classical models their bound is achievable and they gave a necessary and sufficient condition for positive operator-valued measures (POVMs) attaining this bound. They asked (i) whether their bound is attainable more generally, (ii) whether explicit expressions for optimal POVMs can be derived from the attainability condition. We show that the symmetric logarithmic derivative (SLD) quantum information is less than or equal to the SM bound, i.e.\ H(θ)≤CΥ(θ)H(\theta) \leq C_{\Upsilon}(\theta) and we find conditions for equality. As the Fisher information is less than or equal to the SLD quantum information, i.e. FM(θ)≤H(θ)F_M(\theta) \leq H(\theta), we can deduce when equality holds in FM(θ)≤CΥ(θ)F_M(\theta) \leq C_{\Upsilon}(\theta). Equality does not hold for all channels. As a consequence, the attainability condition cannot be used to test for optimal POVMs for all channels. These results are extended to multi-parameter channels.Comment: 16 pages. Published version. Some of the lemmas have been corrected. New resuts have been added. Proofs are more rigorou

    Kondo Quantum Dots and the Novel Kondo-doublet interaction

    Full text link
    We analyze the interactions between two Kondo Quantum Dots connected to a Rashba-active Quantum Wire. We find that the Kondo-doublet interaction, at an inter-dot distance of the order of the wire Fermi length, is over an order of magnitude greater than the RKKY interaction. The effects induced on the Kondo-doublet interaction by the wire spin-orbit coupling can be used to control the Quantum Dots spin-spin correlation. These results imply that the widely used assumption that the RKKY is the dominant interaction between Anderson impurities must be revised.Comment: 4 pages, 4 figs, accepted for publication in PRL. title changed and text polishe

    Quantum Entanglement Capacity with Classical Feedback

    Full text link
    For any quantum discrete memoryless channel, we define a quantity called quantum entanglement capacity with classical feedback (EBE_B), and we show that this quantity lies between two other well-studied quantities. These two quantities - namely the quantum capacity assisted by two-way classical communication (Q2Q_2) and the quantum capacity with classical feedback (QBQ_B) - are widely conjectured to be different: there exists quantum discrete memoryless channel for which Q2>QBQ_2>Q_B. We then present a general scheme to convert any quantum error-correcting codes into adaptive protocols for this newly-defined quantity of the quantum depolarizing channel, and illustrate with Cat (repetition) code and Shor code. We contrast the present notion with entanglement purification protocols by showing that whilst the Leung-Shor protocol can be applied directly, recurrence methods need to be supplemented with other techniques but at the same time offer a way to improve the aforementioned Cat code. For the quantum depolarizing channel, we prove a formula that gives lower bounds on the quantum capacity with classical feedback from any EBE_B protocols. We then apply this formula to the EBE_B protocols that we discuss to obtain new lower bounds on the quantum capacity with classical feedback of the quantum depolarizing channel

    Universal and deterministic manipulation of the quantum state of harmonic oscillators: a route to unitary gates for Fock State qubits

    Full text link
    We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two-by-two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic and state-independent manipulation of the harmonic oscillator quantum state.Comment: 4 pages, 4 figure

    One qubit almost completely reveals the dynamics of two

    Get PDF
    From the time dependence of states of one of them, the dynamics of two interacting qubits is determined to be one of two possibilities that differ only by a change of signs of parameters in the Hamiltonian. The only exception is a simple particular case where several parameters in the Hamiltonian are zero and one of the remaining nonzero parameters has no effect on the time dependence of states of the one qubit. The mean values that describe the initial state of the other qubit and of the correlations between the two qubits also are generally determined to within a change of signs by the time dependence of states of the one qubit, but with many more exceptions. An example demonstrates all the results. Feedback in the equations of motion that allows time dependence in a subsystem to determine the dynamics of the larger system can occur in both classical and quantum mechanics. The role of quantum mechanics here is just to identify qubits as the simplest objects to consider and specify the form that equations of motion for two interacting qubits can take.Comment: 6 pages with new and updated materia

    Optimal estimation of one parameter quantum channels

    Full text link
    We explore the task of optimal quantum channel identification, and in particular the estimation of a general one parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.Comment: 23 pages, 4 figures. Published versio

    The effect of grain boundaries on mechanical behavior in polycrystalline ceramics

    Get PDF
    Atomic structure and chemical composition influence on grain boundaries effect on mechanical failure in polycrystalline ceramic
    • …
    corecore