528 research outputs found

    All Optical Implementation of Multi-Spin Entanglement in a Semiconductor Quantum Well

    Full text link
    We use ultrafast optical pulses and coherent techniques to create spin entangled states of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle a large number of spins.Comment: 17 pages, 3 figure

    Conversion of Central Subfield Thickness Measurements of Diabetic Macular Edema Across Cirrus and Spectralis Optical Coherence Tomography Instruments

    Get PDF
    Purpose: Develop equations to convert Cirrus central subfield thickness (CST) to Spectralis CST equivalents and vice versa in eyes with diabetic macular edema (DME). Methods: The DRCR Retina Network Protocol O data were split randomly to train (70% sample) and validate (30% sample) conversion equations. Data from an independent study (CADME) also validated the equations. Bland-Altman 95% limits of agreement between predicted and observed values evaluated the equations. Results: Protocol O included 374 CST scan pairs from 187 eyes (107 participants). The CADME study included 150 scan pairs of 37 eyes (37 participants). Proposed conversion equations are Spectralis = 40.78 + 0.95 × Cirrus and Cirrus = 1.82 + 0.94 × Spectralis regardless of age, sex, or CST. Predicted values were within 10% of observed values in 101 (90%) of Spectralis and 99 (88%) of Cirrus scans in the validation data; and in 136 (91%) of the Spectralis and 148 (99%) of the Cirrus scans in the CADME data. Adjusting for within-eye correlations, 95% of conversions are estimated to be within 17% (95% confidence interval, 14%-21%) of CST on Spectralis and within 22% (95% confidence interval, 18%-28%) of CST on Cirrus. Conclusions: Conversion equations developed in this study allow the harmonization of CST measurements for eyes with DME using a mix of current Cirrus and Spectralis device images. Translational Relevance: The CSTs measured on Cirrus and Spectralis devices are not directly comparable owing to outer boundary segmentation differences. Converting CST values across spectral domain optical coherence tomography instruments should benefit both clinical research and standard care efforts

    The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018

    Get PDF
    This manuscript describes the use of ultrasound elastography, with the exception of liver applications, and represents an update of the 2013 EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) Guidelines and Recommendations on the clinical use of elastography

    Identification of B Cell Epitopes of Alcohol Dehydrogenase Allergen of Curvularia lunata

    Get PDF
    BACKGROUND/OBJECTIVE: Epitope identification assists in developing molecules for clinical applications and is useful in defining molecular features of allergens for understanding structure/function relationship. The present study was aimed to identify the B cell epitopes of alcohol dehydrogenase (ADH) allergen from Curvularia lunata using in-silico methods and immunoassay. METHOD: B cell epitopes of ADH were predicted by sequence and structure based methods and protein-protein interaction tools while T cell epitopes by inhibitory concentration and binding score methods. The epitopes were superimposed on a three dimensional model of ADH generated by homology modeling and analyzed for antigenic characteristics. Peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by ELISA using individual and pooled patients' sera. RESULT: The homology model showed GroES like catalytic domain joined to Rossmann superfamily domain by an alpha helix. Stereochemical quality was confirmed by Procheck which showed 90% residues in most favorable region of Ramachandran plot while Errat gave a quality score of 92.733%. Six B cell (P1-P6) and four T cell (P7-P10) epitopes were predicted by a combination of methods. Peptide P2 (epitope P2) showed E(X)(2)GGP(X)(3)KKI conserved pattern among allergens of pathogenesis related family. It was predicted as high affinity binder based on electronegativity and low hydrophobicity. The computational methods employed were validated using Bet v 1 and Der p 2 allergens where 67% and 60% of the epitope residues were predicted correctly. Among B cell epitopes, Peptide P2 showed maximum IgE binding with individual and pooled patients' sera (mean OD 0.604±0.059 and 0.506±0.0035, respectively) followed by P1, P4 and P3 epitopes. All T cell epitopes showed lower IgE binding. CONCLUSION: Four B cell epitopes of C. lunata ADH were identified. Peptide P2 can serve as a potential candidate for diagnosis of allergic diseases

    Cyclic AMP Control Measured in Two Compartments in HEK293 Cells: Phosphodiesterase KM Is More Important than Phosphodiesterase Localization

    Get PDF
    The intracellular second messenger cyclic AMP (cAMP) is degraded by phosphodiesterases (PDE). The knowledge of individual families and subtypes of PDEs is considerable, but how the different PDEs collaborate in the cell to control a cAMP signal is still not fully understood. In order to investigate compartmentalized cAMP signaling, we have generated a membrane-targeted variant of the cAMP Bioluminiscence Resonance Energy Transfer (BRET) sensor CAMYEL and have compared intracellular cAMP measurements with it to measurements with the cytosolic BRET sensor CAMYEL in HEK293 cells. With these sensors we observed a slightly higher cAMP response to adenylyl cyclase activation at the plasma membrane compared to the cytosol, which is in accordance with earlier results from Fluorescence Resonance Energy Transfer (FRET) sensors. We have analyzed PDE activity in fractionated lysates from HEK293 cells using selective PDE inhibitors and have identified PDE3 and PDE10A as the major membrane-bound PDEs and PDE4 as the major cytosolic PDE. Inhibition of membrane-bound or cytosolic PDEs can potentiate the cAMP response to adenylyl cyclase activation, but we see no significant difference between the potentiation of the cAMP response at the plasma membrane and in cytosol when membrane-bound and cytosolic PDEs are inhibited. When different levels of stimulation were tested, we found that PDEs 3 and 10 are mainly responsible for cAMP degradation at low intracellular cAMP concentrations, whereas PDE4 is more important for control of cAMP at higher concentrations

    Inter-diffusion of Plasmonic Metals and Phase Change Materials

    Full text link
    This work investigates the problematic diffusion of metal atoms into phase change chalcogenides, which can destroy resonances in photonic devices. Interfaces between Ge2Sb2Te5 and metal layers were studied using X-ray reflectivity (XRR) and reflectometry of metal-Ge2Sb2Te5 layered stacks. The diffusion of metal atoms influences the crystallisation temperature and optical properties of phase change materials. When Au, Ag, Al, W structures are directly deposited on Ge2Sb2Te5 inter-diffusion occurs. Indeed, Au forms AuTe2 layers at the interface. Diffusion barrier layers, such as Si3N4 or stable diffusionless plasmonic materials, such as TiN, can prevent the interfacial damage. This work shows that the interfacial diffusion must be considered when designing phase change material tuned photonic devices, and that TiN is the most suitable plasmonic material to interface directly with Ge2Sb2Te5.Comment: 23 pages, 8 figures, articl
    corecore